File size: 22,904 Bytes
cfcbbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import os
import re
import sys
import openai
import subprocess
import argparse
import numpy as np
import yaml
from datetime import datetime


base_dir = os.getcwd()

# Find the project root directory (where prompts/ directory is located)
# When running from results, we need to go up one level
project_root = os.path.dirname(base_dir) if 'results' in base_dir else base_dir


parser = argparse.ArgumentParser(description='supervisor/coder')
add_arg = parser.add_argument
add_arg('--prompt', help='prompt name')
add_arg('--out_dir', help='output directory')
add_arg('--input-files', nargs='*', help='List of input files from snakemake')
add_arg('--output-files', nargs='*', help='List of output files from snakemake')
add_arg('--config', help='Path to config file', default=os.path.join(project_root, 'config.yml'))
add_arg('--max_iterations', type=int, default=3, help='Maximum coder iterations for faster runs')
args = parser.parse_args()

# Read supervisor and coder from config.yml
config_path = args.config
if os.path.exists(config_path):
    try:
        with open(config_path, 'r') as f:
            config = yaml.safe_load(f)
            supervisor = config.get('supervisor')
            if not supervisor:
                print(f"ERROR: 'supervisor' not found in {config_path}")
                sys.exit(1)
            coder = config.get('coder')
            if not coder:
                print(f"ERROR: 'coder' not found in {config_path}")
                sys.exit(1)
    except Exception as e:
        print(f"ERROR: Could not read {config_path}: {e}")
        sys.exit(1)
else:
    print(f"ERROR: config file not found at {config_path}")
    sys.exit(1)

temperature = config.get('temperature', None)

def get_code(output): # convert Markdown to Python
    match = re.search(r'```python\s*(.*?)\s*```', output, re.DOTALL)
    if match:
        return match.group(1).strip()
    return output

name = args.prompt
out_dir = args.out_dir
os.makedirs(out_dir, exist_ok=True)

log_dir = os.path.join(out_dir, 'logs')
os.makedirs(log_dir, exist_ok=True)
code_dir = os.path.join(out_dir, 'generated_code')
os.makedirs(code_dir, exist_ok=True)
prompt_pair_dir = os.path.join(out_dir, 'prompt_pairs') # for saving supervisor/user prompt pairs
os.makedirs(prompt_pair_dir, exist_ok=True)

prompt_filepath = os.path.join(out_dir, f'prompts_temp/{name}.txt')
# If the prompt file doesn't exist in prompts_temp, try logs (for modified prompts)
if not os.path.exists(prompt_filepath):
    prompt_filepath = os.path.join(out_dir, f'logs/{name}.txt')
with open(prompt_filepath, 'r') as file:
    user_prompt = file.read()

first_supervisor_instructions_filepath = os.path.join(out_dir, 'prompts_temp/supervisor_first_call.txt')
with open(first_supervisor_instructions_filepath, 'r') as file:
    first_supervisor_instructions = file.read()

supervisor_instructions_filepath = os.path.join(out_dir, 'prompts_temp/supervisor_call.txt')
with open(supervisor_instructions_filepath, 'r') as file:
    supervisor_instructions = file.read()

# Build initial supervisor prompt with file context
file_context = ''
if args.input_files:
    file_context += '\nInput files:\n' + '\n'.join(args.input_files)
if args.output_files:
    file_context += '\nOutput files:\n' + '\n'.join(args.output_files)
supervisor_prompt = first_supervisor_instructions + file_context + '\n\n' + user_prompt

client = openai.OpenAI(
    api_key = os.environ.get('CBORG_API_KEY'),
    base_url = 'https://api.cborg.lbl.gov'
)

done_outer = False
count_outer = 0
total_calls = 0
input_tokens = 0
output_tokens = 0
tokens = {"User Prompt": 0, "Supervisor to Coder": 0, "Coder Outputs": 0, "Feedback to Supervisor": 0}

# Create comprehensive log (only log file we'll create)
comprehensive_log_path = os.path.join(log_dir, f'{name}_comprehensive_log.txt')
start_time = datetime.now()

# Initialize comprehensive log with header
with open(comprehensive_log_path, 'w') as comp_log:
    comp_log.write("=" * 100 + "\n")
    comp_log.write("🎯 COMPREHENSIVE SUPERVISOR-CODER LOG\n")
    comp_log.write("=" * 100 + "\n\n")
    comp_log.write(f"πŸ“‹ Task: {name}\n")
    comp_log.write(f"πŸ€– Supervisor: {supervisor}\n")
    comp_log.write(f"πŸ€– Coder: {coder}\n")
    comp_log.write(f"πŸ• Start Time: {start_time}\n")
    comp_log.write(f"πŸ“ Working Directory: {os.getcwd()}\n")
    comp_log.write(f"πŸ“‚ Output Directory: {out_dir}\n\n")
    
    # Log the original user prompt
    comp_log.write("πŸ“ ORIGINAL USER PROMPT\n")
    comp_log.write("-" * 50 + "\n")
    comp_log.write(user_prompt)
    comp_log.write("\n\n")
    
    # Log supervisor instructions
    # comp_log.write("πŸŽ“ SUPERVISOR INSTRUCTIONS\n")
    # comp_log.write("-" * 50 + "\n")
    # comp_log.write(first_supervisor_instructions)
    # comp_log.write("\n\n")
    
    # Log supervisor call template
    # comp_log.write("πŸ“‹ SUPERVISOR CALL TEMPLATE\n")
    # comp_log.write("-" * 50 + "\n")
    # comp_log.write(supervisor_instructions)
    # comp_log.write("\n\n")
    
    comp_log.write("πŸš€ PROCESS START\n")
    comp_log.write("-" * 50 + "\n\n")

# Function to log to comprehensive log
def log_comprehensive(message, section="", level="INFO", plain=False):
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    with open(comprehensive_log_path, 'a') as comp_log:
        if section:
            # Use more prominent section headers
            comp_log.write(f"\n\n{'='*25} {section.upper()} {'='*25}\n\n")
        
        # Truncate very long messages to prevent memory issues
        if len(message) > 50000:  # 50KB limit
            truncated_message = message[:50000] + f"\n\n[TRUNCATED: message was {len(message)} characters long]"
            message = truncated_message
        
        if plain:
            # For logging raw content like prompts or code
            comp_log.write(f"{message}\n")
        else:
            comp_log.write(f"[{timestamp}] {level}: {message}\n")

log_comprehensive("Starting supervisor-coder interaction", "πŸš€ INITIALIZATION")

print("=== SUPERVISOR-CODER MAIN LOOP ===")
log_comprehensive("=== MAIN LOOP STARTED ===", "πŸ”„ LOOP START")
print(f"πŸ”„ Calling supervisor {supervisor} (initial)")
log_comprehensive(f"Calling supervisor {supervisor} with initial prompt", "πŸ€– SUPERVISOR CALL")
try:
    response = client.chat.completions.create(
        model = supervisor,
        messages = [
            {
                'role': 'user',
                'content': supervisor_prompt
            }
        ],
        temperature = temperature
    )
    tokens['User Prompt'] += response.usage.prompt_tokens
    input_tokens += response.usage.prompt_tokens
    output_tokens += response.usage.completion_tokens
    supervisor_response = response.choices[-1].message.content
    
    # Log initial prompt tokens
    print(f"Initial supervisor prompt tokens: {tokens['User Prompt']}")
    log_comprehensive(f"Initial supervisor prompt tokens: {tokens['User Prompt']}", "TOKEN STATS")
    
    # Log token stats and content under SUPERVISOR RESPONSE section
    log_comprehensive(
        f"Supervisor response received ({response.usage.prompt_tokens} input tokens, {response.usage.completion_tokens} output tokens)",
        "SUPERVISOR RESPONSE"
    )
    log_comprehensive(supervisor_response, plain=True)
    # Include input and output files under the same section without extra headers
    log_comprehensive(file_context, section="", plain=True)
except Exception as e:
    log_comprehensive(f"Supervisor API call failed: {e}", "❌ API ERROR", "ERROR")
    print(f"OpenAI API error: {e}")
    # Check if it's a rate limit or quota issue (temporary)
    if "429" in str(e) or "rate" in str(e).lower() or "quota" in str(e).lower():
        print("Rate limit or quota exceeded. This is a temporary issue.")
        print("Stopping job to avoid wasting resources on temporary failures.")
        log_comprehensive("Terminating due to rate limit/quota issue", "πŸ›‘ TERMINATION", "ERROR")
        sys.exit(1)  # Fail for rate limits
    else:
        print("Permanent API error (auth, network, etc.). Stopping job.")
        log_comprehensive("Terminating due to permanent API error", "πŸ›‘ TERMINATION", "ERROR")
        sys.exit(1)  # Fail for permanent errors

if 'Call record:' in supervisor_response:
    coder_prompt, record = supervisor_response.split('Call record:', 1)
else:
    coder_prompt = supervisor_response
    record = "Supervisor did not provide a record."
    # Commented out parsing warning to silence logs
    # log_comprehensive("Supervisor response missing 'Call record:'. Treating entire response as coder prompt.", "PARSING WARNING", "WARNING")

supervisor_record = os.path.join(log_dir, 'supervisor_record.txt')
with open(supervisor_record, 'w') as f:
    f.write('Call 1 record: ' + record)
    f.write(f'WARNING: running supervisor/coder with supervisor {supervisor} and coder {coder}')

# log_comprehensive(f"Initial supervisor record: {record}", "πŸ“ SUPERVISOR RECORD")
done_inner = False
count_inner = 0
old_coder_prompt = "Default coder prompt"  # Initialize to avoid unbound variable
while not done_inner and count_inner < args.max_iterations:
    count_inner += 1
    print(f"πŸ€– Calling coder {coder} (attempt {count_inner}/{args.max_iterations})")
    log_comprehensive(f"Calling coder {coder} (attempt {count_inner}/{args.max_iterations})", f"πŸ€– CODER CALL #{count_inner}")
    # log_comprehensive(f"Coder Prompt:\n{coder_prompt}")
    try: 
        print("DEBUG: Making coder API call...")
        response = client.chat.completions.create(
            model = coder,
            messages = [
                {
                    'role': 'user',
                    'content': coder_prompt
                }
            ],
            temperature = temperature
        )
        print("DEBUG: Coder API call completed successfully")
        input_tokens += response.usage.prompt_tokens
        output_tokens += response.usage.completion_tokens
        tokens['Supervisor to Coder'] += response.usage.prompt_tokens
        tokens['Coder Outputs'] += response.usage.completion_tokens
        supervisor_response = response.choices[-1].message.content
        output = response.choices[-1].message.content
        print(f"DEBUG: Extracted output, type: {type(output)}, length: {len(output) if output else 0}")
        log_comprehensive(f"Coder response received ({response.usage.prompt_tokens} input tokens, {response.usage.completion_tokens} output tokens)", f"CODER RESPONSE #{count_inner}")
        log_comprehensive("Generated Code:", plain=True)
        log_comprehensive(output, plain=True)
        print("DEBUG: Logged coder response successfully")
    except Exception as e:
        log_comprehensive(f"Coder API call failed: {e}", f"❌ CODER ERROR #{count_inner}", "ERROR")
        print(f"OpenAI API error: {e}")
        if "429" in str(e) or "rate" in str(e).lower() or "quota" in str(e).lower():
            print("Rate limit or quota exceeded. This is a temporary issue.")
            print("Stopping job to avoid wasting resources on temporary failures.")
            log_comprehensive("Terminating due to rate limit/quota issue", "πŸ›‘ TERMINATION", "ERROR")
            sys.exit(1)  # Fail for rate limits
        else:
            print("Permanent API error (auth, network, etc.). Stopping job.")
            log_comprehensive("Terminating due to permanent API error", "πŸ›‘ TERMINATION", "ERROR")
            sys.exit(1)  # Fail for permanent errors
    
    code = get_code(output)
    # log_comprehensive(f"Extracted code from response:\n{code}", f"πŸ”§ CODE EXTRACTION #{count_inner}")

    code_filepath = os.path.join(code_dir, f'{name}.py')
    with open(code_filepath, 'w') as f:
        f.write(code)

    print("⚑ Executing code from coder")
    # log_comprehensive("Executing generated code", f"⚑ CODE EXECUTION #{count_inner}")
    
    # Execute code and capture output directly to comprehensive log
    cmd = ['python', code_filepath]

    # General-purpose argument passing from Snakemake to the generated script.
    # Pass all input and output files to the generated script.
    if args.input_files:
        cmd.extend(['--input-files', *args.input_files])
    
    if args.output_files:
        cmd.extend(['--output-files', *args.output_files])

    # Log the execution command
    log_comprehensive("Executing generated code.", f"CODE EXECUTION #{count_inner}")
    log_comprehensive(f"Command: {' '.join(cmd)}", level="DEBUG")

    # Ensure generated code writes job-scoped artifacts
    env = os.environ.copy()
    if out_dir:
        env['OUTPUT_DIR'] = out_dir
    process = subprocess.run(
        cmd,
        stdout=subprocess.PIPE,
        stderr=subprocess.STDOUT,
        text=True,
        env=env,
    )
    
    # Log execution results to comprehensive log
    log_comprehensive(f"Execution completed with exit code {process.returncode}", f"EXECUTION RESULT #{count_inner}")
    
    if process.returncode != 0:
        log_comprehensive("Execution failed. Output:", level="ERROR")
        log_comprehensive(process.stdout, plain=True)
    else:
        log_comprehensive("Execution successful. Output:", level="INFO")
        log_comprehensive(process.stdout, plain=True)
    
    # Use the execution output directly for supervisor feedback
    command_line_output = process.stdout or ""

    # Verify that the output files were actually created
    if args.output_files:
        for output_file in args.output_files:
            if not os.path.exists(output_file):
                error_message = f"\nERROR: Output file was not created: {output_file}"
                print(error_message)
                command_line_output += error_message
                log_comprehensive(f"Output file not found after execution: {output_file}", f"EXECUTION RESULT #{count_inner}", "ERROR")
            elif os.path.getsize(output_file) == 0:
                error_message = f"\nERROR: Output file exists but is empty: {output_file}"
                print(error_message)
                command_line_output += error_message
                log_comprehensive(f"Output file exists but is empty: {output_file}", f"EXECUTION RESULT #{count_inner}", "ERROR")
            else:
                # File exists and has content - verify it was recently created/modified
                import time
                mtime = os.path.getmtime(output_file)
                current_time = time.time()
                if current_time - mtime > 60:  # Modified more than 1 minute ago
                    error_message = f"\nWARNING: Output file exists but was not recently modified: {output_file} (modified {current_time - mtime:.1f} seconds ago)"
                    print(error_message)
                    command_line_output += error_message
                    log_comprehensive(f"Output file exists but not recently modified: {output_file}", f"EXECUTION RESULT #{count_inner}", "WARNING")

    # construct new supervisor prompt
    with open(supervisor_record, 'r') as f:
        record = f.read()

    before_user, after_user = supervisor_instructions.split('User prompt:')
    # Rebuild file context for feedback prompts
    file_context = ''
    if args.input_files:
        file_context += '\nInput files:\n' + '\n'.join(args.input_files)
    if args.output_files:
        file_context += '\nOutput files:\n' + '\n'.join(args.output_files)
    new_supervisor_prompt = (
        before_user + file_context + '\nUser prompt:\n' + user_prompt +
        '\nGenerated code:\n' + code +
        '\nCommand line output:\n' + command_line_output +
        '\nRecord:\n' + record
    )
    # SUPERVISOR_PROMPT_FEEDBACK logging removed to avoid duplicating the built prompt
        
    print(f"Calling supervisor {supervisor} (iteration {count_inner})")
    log_comprehensive(f"Calling supervisor {supervisor} for feedback (iteration {count_inner})", f"πŸ€– SUPERVISOR FEEDBACK CALL #{count_inner}")
    supervisor_response_inner = ""  # Initialize to avoid unbound variable
    try:
        response = client.chat.completions.create(
            model = supervisor,
            messages = [
                {
                    'role': 'user',
                    'content': new_supervisor_prompt
                }
            ],
            temperature = temperature
        )
        input_tokens += response.usage.prompt_tokens
        output_tokens += response.usage.completion_tokens
        tokens['Feedback to Supervisor'] += response.usage.prompt_tokens
        supervisor_response_inner = response.choices[-1].message.content
        log_comprehensive(f"Supervisor feedback received ({response.usage.prompt_tokens} input tokens, {response.usage.completion_tokens} output tokens)", f"SUPERVISOR FEEDBACK RESPONSE #{count_inner}")
        log_comprehensive("Supervisor Feedback:", plain=True)
        log_comprehensive(supervisor_response_inner, plain=True)
    except Exception as e:
        log_comprehensive(f"Supervisor feedback API call failed: {e}", f"❌ SUPERVISOR ERROR #{count_inner}", "ERROR")
        print(f"OpenAI API error: {e}")
        if "429" in str(e) or "rate" in str(e).lower() or "quota" in str(e).lower():
            print("Rate limit or quota exceeded. This is a temporary issue.")
            print("Stopping job to avoid wasting resources on temporary failures.")
            log_comprehensive("Terminating due to rate limit/quota issue", "πŸ›‘ TERMINATION", "ERROR")
            sys.exit(1)  # Fail for rate limits
        else:
            print("Permanent API error (auth, network, etc.). Stopping job.")
            log_comprehensive("Terminating due to permanent API error", "πŸ›‘ TERMINATION", "ERROR")
            sys.exit(1)  # Fail for permanent errors
    
    # Set the response for processing
    supervisor_response = supervisor_response_inner
    
    if 'Call record:' in supervisor_response:
        try:
            parts = supervisor_response.split('Call record:', 1)
            coder_prompt = parts[0]
            record = parts[-1]
            with open(supervisor_record, 'a') as f:
                f.write(f'\nCall {count_inner} record: ' + record)
        except Exception as e:
            log_comprehensive(f"Error parsing supervisor response: {e}", f"⚠️ PARSING WARNING #{count_inner}", "WARNING")
            print(f"Error parsing supervisor response: {e}")
            coder_prompt = supervisor_response
    else:
        coder_prompt = supervisor_response
        # Suppress parsing warning
        # log_comprehensive("Supervisor response missing 'Call record:'. Treating entire response as coder prompt.", f"⚠️ PARSING WARNING #{count_inner}", "WARNING")

    old_coder_prompt = coder_prompt
    if 'Supervisor is satisfied with current results' in coder_prompt:
        done_inner = True
        print(f"βœ… Supervisor satisfied after {count_inner} iterations!")
        log_comprehensive(f"SUCCESS: Supervisor satisfied after {count_inner} iterations!", "πŸŽ‰ SUCCESS")
    else:
        log_comprehensive(f"Supervisor not satisfied, continuing to iteration {count_inner + 1}", f"πŸ”„ CONTINUING TO ITERATION #{count_inner + 1}")
        # Ensure coder_prompt is set for the next iteration
        if 'Call record:' not in supervisor_response:
            coder_prompt = supervisor_response

total_calls = 1 + 2*count_inner  # Initial supervisor + coder calls + feedback supervisor calls
print(f"πŸ“Š Total API calls made: {total_calls}")
log_comprehensive(f"Total API calls made: {total_calls}", "πŸ“Š FINAL STATISTICS")
log_comprehensive(f"Final token counts: {input_tokens} input, {output_tokens} output")

# Final summary
end_time = datetime.now()
duration = end_time - start_time
log_comprehensive(f"Interaction completed in {duration}", "🏁 PROCESS COMPLETED")
log_comprehensive("=== END OF COMPREHENSIVE LOG ===", "🏁 END OF LOG")

# Add final summary to comprehensive log
with open(comprehensive_log_path, 'a') as comp_log:
    comp_log.write(f"\n{'='*100}\n")
    comp_log.write("πŸ“Š FINAL SUMMARY\n")
    comp_log.write(f"{'='*100}\n")
    comp_log.write(f"Task: {name}\n")
    comp_log.write(f"Supervisor: {supervisor}\n")
    comp_log.write(f"Coder: {coder}\n")
    comp_log.write(f"Total Iterations: {count_inner if 'count_inner' in locals() else 0}\n")
    comp_log.write(f"Start Time: {start_time}\n")
    comp_log.write(f"End Time: {end_time}\n")
    comp_log.write(f"Duration: {duration}\n")
    comp_log.write(f"Total API Calls: {total_calls}\n")
    comp_log.write(f"Total Input Tokens: {input_tokens}\n")
    comp_log.write(f"Total Output Tokens: {output_tokens}\n")
    comp_log.write(f"User Prompt Tokens: {tokens['User Prompt']}\n")
    comp_log.write(f"Supervisor to Coder Tokens: {tokens['Supervisor to Coder']}\n")
    comp_log.write(f"Coder Output Tokens: {tokens['Coder Outputs']}\n")
    comp_log.write(f"Feedback to Supervisor Tokens: {tokens['Feedback to Supervisor']}\n")
    final_status = 'SUCCESS' if ('done_inner' in locals() and done_inner) else 'INCOMPLETE'
    comp_log.write(f"Final Status: {final_status}\n")
    comp_log.write(f"{'='*100}\n")

prompt_pair = f'User Prompt: \n {user_prompt} \n Supervisor Prompt: \n {old_coder_prompt}'
prompt_pair_path = os.path.join(prompt_pair_dir, f'{name}.txt')
with open(prompt_pair_path, 'w') as f:
    f.write(prompt_pair)

# Save metrics arrays under the run's logs directory
calls_filepath = os.path.join(out_dir, 'logs', 'calls.npy')
if os.path.exists(calls_filepath):
    old_calls = np.load(calls_filepath)
    new_calls = np.append(old_calls, total_calls)
else:
    new_calls = np.array([total_calls])
np.save(calls_filepath, new_calls)

input_tokens_filepath = os.path.join(out_dir, 'logs', 'input_tokens.npy')
if os.path.exists(input_tokens_filepath):
    old_tokens = np.load(input_tokens_filepath)
    new_tokens = np.append(old_tokens, input_tokens)
else:
    new_tokens = np.array([input_tokens])
np.save(input_tokens_filepath, new_tokens)

output_tokens_filepath = os.path.join(out_dir, 'logs', 'output_tokens.npy')
if os.path.exists(output_tokens_filepath):
    old_tokens = np.load(output_tokens_filepath)
    new_tokens = np.append(old_tokens, output_tokens)
else:
    new_tokens = np.array([output_tokens])
np.save(output_tokens_filepath, new_tokens)

# Before final success messages, verify output files exist and are non-empty
if args.output_files:
    missing = [f for f in args.output_files if not os.path.exists(f) or os.path.getsize(f) == 0]
    if missing:
        print(f"βœ— Missing or empty output files: {missing}")
        sys.exit(1)
    else:
        print("βœ… All expected output files created.")

print("πŸŽ‰ Supervisor-coder interaction completed!")
print(f"πŸ“ˆ Final stats: {total_calls} total API calls, {input_tokens} input tokens, {output_tokens} output tokens")
print(f"πŸ“‹ Comprehensive log saved to: {comprehensive_log_path}")