File size: 10,428 Bytes
cfcbbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import pandas as pd
import re
import glob
from tqdm import tqdm
import datetime
import openai
import argparse
import io

def summarize_results(results_dirs, output_csv, model, no_llm = False):
    client = openai.OpenAI(
        api_key = os.environ.get('CBORG_API_KEY'),
        base_url = 'https://api.cborg.lbl.gov'
    )

    error_categorization_prompt = (
        "You are an expert at classifying error messages from machine learning workflows in high energy physics.\n\n"
        "Workflow summary:\n"
        "- A user provides an analysis task prompt.\n"
        "- A supervisor agent breaks down the task and instructs a coder agent.\n"
        "- The coder agent generates code, which is executed.\n"
        "- The supervisor reviews results and may iterate with the coder to fix issues until the task is complete.\n"
        "Below is a list of error categories:\n"
        "all data weights = 0, "
        "dummy data created, "
        "function-calling error, "
        "incorrect branch name, "
        "intermediate file not found, "
        "semantic error, "
        "other."
        "Your task: For the given error description, select the single most appropriate error category from the list above. "
        "Base your choice on the underlying nature or root cause of the error, not on the symptoms, error messages, or observable effects. "
        "Focus on what fundamentally caused the error, such as logic mistakes, missing dependencies, data mismatches, or miscommunication, rather than how the error was reported or observed.\n"
        "Return ALL applicable category names, each wrapped with three asterisks on each side, separated by commas, like this: ***Category***"
        "Do not include any other text, explanation, or formatting."
        "log file:\n"
    )

    results = []
    for results_dir in results_dirs:
        for name in tqdm(os.listdir(results_dir), desc=f"generating error descriptions for {results_dir}"):
            output_dir = os.path.join(results_dir, name)

            if os.path.isdir(output_dir):
                # Extract config (everything before "_step")
                config_match = re.match(r'^(.*?)_step\d+', name)
                config = config_match.group(1) if config_match else None

                # Extract step (int after "_step")
                step_match = re.search(r'_step(\d+)', name)
                step = int(step_match.group(1)) if step_match else None

                result = {
                    "supervisor": None,
                    "coder": None,
                    "step": step,
                    "success": None,
                    "iterations": None,
                    "duration": None,
                    "API_calls": None,
                    "input_tokens": None,
                    "output_tokens": None,
                    "user_prompt_tokens": None,
                    "supervisor_to_coder_tokens": None,
                    "coder_output_tokens": None,
                    "feedback_to_supervisor_tokens": None,
                    "error": "Uncategorized",
                    "error_description": None,
                    "output_dir": output_dir,
                }

                log_dir = os.path.join(output_dir, "logs")
                if os.path.isdir(log_dir):
                    comp_log_files = glob.glob(os.path.join(log_dir, "*comprehensive_log.txt"))
                    comp_log_str = None
                    if comp_log_files:
                        with open(comp_log_files[0], "r") as f:
                            comp_log_str = f.read()
                    else:
                        result["success"] = False
                        result["error_description"] = "comprehensive log file not found"
                        results.append(result)
                        continue

                    supervisor_match = re.search(r"Supervisor:\s*([^\s]+)", comp_log_str)
                    coder_match = re.search(r"Coder:\s*([^\s]+)", comp_log_str)
                    if supervisor_match:
                        result["supervisor"] = supervisor_match.group(1)
                    if coder_match:
                        result["coder"] = coder_match.group(1)

                    iterations_match = re.search(r"Total Iterations:\s*(\d+)", comp_log_str)
                    if iterations_match:
                        result["iterations"] = int(iterations_match.group(1))

                    duration_match = re.search(r"Duration:\s*([0-9:.\s]+)", comp_log_str)
                    if duration_match:
                        duration_str = duration_match.group(1).strip()
                        try:
                            t = datetime.datetime.strptime(duration_str, "%H:%M:%S.%f")
                        except ValueError:
                            t = datetime.datetime.strptime(duration_str, "%H:%M:%S")
                        result["duration"] = t.hour * 3600 + t.minute * 60 + t.second + t.microsecond / 1e6

                    api_calls_match = re.search(r"Total API Calls:\s*(\d+)", comp_log_str)
                    if api_calls_match:
                        result["API_calls"] = int(api_calls_match.group(1))
                    input_tokens_match = re.search(r"Total Input Tokens:\s*(\d+)", comp_log_str)
                    if input_tokens_match:
                        result["input_tokens"] = int(input_tokens_match.group(1))
                    output_tokens_match = re.search(r"Total Output Tokens:\s*(\d+)", comp_log_str)
                    if output_tokens_match:
                        result["output_tokens"] = int(output_tokens_match.group(1))
                    
                    match = re.search(r"User Prompt Tokens:\s*(\d+)", comp_log_str)
                    if match:
                        result["user_prompt_tokens"] = int(match.group(1))
                    match = re.search(r"Supervisor to Coder Tokens:\s*(\d+)", comp_log_str)
                    if match:
                        result["supervisor_to_coder_tokens"] = int(match.group(1))
                    match = re.search(r"Coder Output Tokens:\s*(\d+)", comp_log_str)
                    if match:
                        result["coder_output_tokens"] = int(match.group(1))
                    match = re.search(r"Feedback to Supervisor Tokens:\s*(\d+)", comp_log_str)
                    if match:
                        result["feedback_to_supervisor_tokens"] = int(match.group(1))

                    # Check validation.log to see if outputs are correct
                    val_log_files = glob.glob(os.path.join(log_dir, "*validation.log"))
                    val_log_str = None
                    if val_log_files:
                        with open(val_log_files[0], "r") as f:
                            val_log_str = f.read()
                            matches = re.findall(r'(✅ Validation successful|❌ Validation failed)', val_log_str)
                            if not matches:
                                result["success"] = False
                            else:
                                last = matches[-1]
                                result["success"] = last == "✅ Validation successful"
                            if (no_llm):
                                if (result["success"]):
                                    result["error"] = None
                                else:
                                    result["error"] = "Validation Error"
                            val_log_str = val_log_str.replace('\n', '').replace('\r', '')
                    else:
                        result["success"] = False
                        val_log_str = ""
                    if (not no_llm):
                        try:
                            response = client.chat.completions.create(
                                model = model,
                                messages = [
                                    {
                                        'role': 'user',
                                        'content': error_categorization_prompt + 
                                            "\nComprehensive Log:\n" + comp_log_str + 
                                            "\nValidation Log:\n" + val_log_str
                                    }
                                ],
                            )
                            error_description = response.choices[-1].message.content
                            def parse_categories(llm_output):
                                # Find all ***Category Name*** matches
                                return [cat.strip() for cat in re.findall(r"\*\*\*(.*?)\*\*\*", llm_output)]
                            result["Error"] = parse_categories(error_description)
                        except Exception as e:
                            result["Error"] = "uncategorized"
                            print(error_description)
                            exit()
                            print(f"OpenAI API error: {e}")      
                    else:
                        if ("API call failed" in comp_log_str):
                            result["error"] = "API Call Error"              
                else:
                    result["success"] = False
                    result["Error"] = "job submission failure"
                results.append(result)

    df = pd.DataFrame(results)
    df = df.sort_values(by=["supervisor", "coder", "step", "output_dir"])
    df.to_csv(output_csv, index=False)
    print(f"Results written to {output_csv}")


def main():
    parser = argparse.ArgumentParser(description="Summarize experiment logs and errors")
    parser.add_argument("--results_dir", type=str, default=" ", nargs='+', required=False, help="One or more directories containing experiment results")
    parser.add_argument("--output_csv", type=str, default="results_summary.csv", help="Path to output CSV file")
    parser.add_argument("--model", type=str, default="gpt-oss-120b", help="LLM model to use for error summarization")
    parser.add_argument("--no_llm", action="store_true", default=False, help="If set, only generate the CSV without LLM error description or categorization")
    args = parser.parse_args()

    summarize_results(
        results_dirs=args.results_dir,
        output_csv=args.output_csv,
        model=args.model,
        no_llm=args.no_llm
    )

if __name__ == "__main__":
    main()