Update README.md
Browse files
README.md
CHANGED
|
@@ -12,8 +12,6 @@ base_model:
|
|
| 12 |
|
| 13 |
**roberta-large-entity-linking** is a [RoBERTa large model](https://huggingface.co/FacebookAI/roberta-large) fine-tuned as a [bi-encoder](https://arxiv.org/pdf/1811.08008) for [entity linking](https://en.wikipedia.org/wiki/Entity_linking) tasks. The model separately embeds mentions-in-context and entity descriptions to enable semantic matching between text mentions and knowledge base entities.
|
| 14 |
|
| 15 |
-
## Intended Uses
|
| 16 |
-
|
| 17 |
### Primary Use Cases
|
| 18 |
- **Entity Linking:** Link Wikipedia concepts mentioned in text to their corresponding Wikipedia pages. With [this dataset](https://huggingface.co/datasets/wikimedia/structured-wikipedia) [Wikimedia](https://huggingface.co/wikimedia) makes it easy, you can embed the entries in the "abstract" column (you may need to do some cleanup to filter out irrelevant entries).
|
| 19 |
- **Zero-shot Entity Linking:** Link entities to knowledge bases without task-specific training
|
|
@@ -103,14 +101,10 @@ for i, definition in enumerate(definitions):
|
|
| 103 |
print(f"Similarity: {sim_value:.4f}\n")
|
| 104 |
```
|
| 105 |
|
| 106 |
-
## Model Details
|
| 107 |
-
|
| 108 |
-
|
| 109 |
### Training Data
|
| 110 |
- **Dataset:** 3 million pairs of Wikipedia anchor text links and Wikipedia page abstracts, derived from [this dataset](https://huggingface.co/datasets/wikimedia/structured-wikipedia)
|
| 111 |
- **Special Token:** `[ENT]` token added to vocabulary mark entity mentions
|
| 112 |
|
| 113 |
-
|
| 114 |
### Training Details
|
| 115 |
- **Hardware:** Single 80GB H100 GPU
|
| 116 |
- **Batch Size:** 80
|
|
@@ -118,8 +112,6 @@ for i, definition in enumerate(definitions):
|
|
| 118 |
- **Loss Function:** Batch hard triplet loss (margin=0.4)
|
| 119 |
- **Max Sequence Length:** 256 tokens (both mentions and descriptions)
|
| 120 |
|
| 121 |
-
## Performance
|
| 122 |
-
|
| 123 |
### Benchmark Results
|
| 124 |
- **Dataset:** Zero-Shot Entity Linking [(Logeswaran et al., 2019)](https://arxiv.org/abs/1906.07348)
|
| 125 |
- **Metric:** Recall@64
|
|
|
|
| 12 |
|
| 13 |
**roberta-large-entity-linking** is a [RoBERTa large model](https://huggingface.co/FacebookAI/roberta-large) fine-tuned as a [bi-encoder](https://arxiv.org/pdf/1811.08008) for [entity linking](https://en.wikipedia.org/wiki/Entity_linking) tasks. The model separately embeds mentions-in-context and entity descriptions to enable semantic matching between text mentions and knowledge base entities.
|
| 14 |
|
|
|
|
|
|
|
| 15 |
### Primary Use Cases
|
| 16 |
- **Entity Linking:** Link Wikipedia concepts mentioned in text to their corresponding Wikipedia pages. With [this dataset](https://huggingface.co/datasets/wikimedia/structured-wikipedia) [Wikimedia](https://huggingface.co/wikimedia) makes it easy, you can embed the entries in the "abstract" column (you may need to do some cleanup to filter out irrelevant entries).
|
| 17 |
- **Zero-shot Entity Linking:** Link entities to knowledge bases without task-specific training
|
|
|
|
| 101 |
print(f"Similarity: {sim_value:.4f}\n")
|
| 102 |
```
|
| 103 |
|
|
|
|
|
|
|
|
|
|
| 104 |
### Training Data
|
| 105 |
- **Dataset:** 3 million pairs of Wikipedia anchor text links and Wikipedia page abstracts, derived from [this dataset](https://huggingface.co/datasets/wikimedia/structured-wikipedia)
|
| 106 |
- **Special Token:** `[ENT]` token added to vocabulary mark entity mentions
|
| 107 |
|
|
|
|
| 108 |
### Training Details
|
| 109 |
- **Hardware:** Single 80GB H100 GPU
|
| 110 |
- **Batch Size:** 80
|
|
|
|
| 112 |
- **Loss Function:** Batch hard triplet loss (margin=0.4)
|
| 113 |
- **Max Sequence Length:** 256 tokens (both mentions and descriptions)
|
| 114 |
|
|
|
|
|
|
|
| 115 |
### Benchmark Results
|
| 116 |
- **Dataset:** Zero-Shot Entity Linking [(Logeswaran et al., 2019)](https://arxiv.org/abs/1906.07348)
|
| 117 |
- **Metric:** Recall@64
|