Update README.md
Browse files
README.md
CHANGED
|
@@ -98,27 +98,31 @@ print(decoded_sequences)
|
|
| 98 |
|
| 99 |
```python
|
| 100 |
|
|
|
|
| 101 |
import torch
|
| 102 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 103 |
|
| 104 |
-
# Load the tokenizer and model
|
| 105 |
tokenizer = AutoTokenizer.from_pretrained("GENERator-eukaryote-3b-base", trust_remote_code=True)
|
| 106 |
-
model = AutoModelForCausalLM.from_pretrained("
|
| 107 |
|
|
|
|
| 108 |
config = model.config
|
| 109 |
max_length = config.max_position_embeddings
|
| 110 |
|
| 111 |
-
# Define input sequences
|
| 112 |
sequences = [
|
| 113 |
"ATGAGGTGGCAAGAAATGGGCTAC",
|
| 114 |
"GAATTCCATGAGGCTATAGAATAATCTAAGAGAAAT"
|
| 115 |
]
|
| 116 |
|
| 117 |
-
#
|
| 118 |
-
|
|
|
|
|
|
|
| 119 |
tokenizer.padding_side = "right"
|
| 120 |
inputs = tokenizer(
|
| 121 |
-
|
| 122 |
add_special_tokens=True,
|
| 123 |
return_tensors="pt",
|
| 124 |
padding=True,
|
|
@@ -126,29 +130,34 @@ inputs = tokenizer(
|
|
| 126 |
max_length=max_length
|
| 127 |
)
|
| 128 |
|
| 129 |
-
#
|
| 130 |
with torch.inference_mode():
|
| 131 |
outputs = model(**inputs, output_hidden_states=True)
|
| 132 |
|
| 133 |
-
|
| 134 |
-
hidden_states = outputs.hidden_states[-1] # Shape: (batch_size, sequence_length, hidden_size)
|
| 135 |
-
|
| 136 |
-
# Use the attention_mask to determine the index of the last token in each sequence.
|
| 137 |
-
# Since add_special_tokens=True is used, the last token is typically the EOS token.
|
| 138 |
attention_mask = inputs["attention_mask"]
|
| 139 |
-
last_token_indices = attention_mask.sum(dim=1) - 1 # Index of the last token for each sequence
|
| 140 |
-
|
| 141 |
-
# Extract the embedding corresponding to the EOS token for each sequence.
|
| 142 |
-
seq_embeddings = []
|
| 143 |
-
for i, token_index in enumerate(last_token_indices):
|
| 144 |
-
# Fetch the embedding for the last token (EOS token).
|
| 145 |
-
seq_embedding = hidden_states[i, token_index, :]
|
| 146 |
-
seq_embeddings.append(seq_embedding)
|
| 147 |
-
|
| 148 |
-
# Stack the embeddings into a tensor with shape (batch_size, hidden_size)
|
| 149 |
-
seq_embeddings = torch.stack(seq_embeddings)
|
| 150 |
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
```
|
| 154 |
|
|
|
|
| 98 |
|
| 99 |
```python
|
| 100 |
|
| 101 |
+
|
| 102 |
import torch
|
| 103 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 104 |
|
| 105 |
+
# Load the tokenizer and model
|
| 106 |
tokenizer = AutoTokenizer.from_pretrained("GENERator-eukaryote-3b-base", trust_remote_code=True)
|
| 107 |
+
model = AutoModelForCausalLM.from_pretrained("GENERator-eukaryote-3b-base")
|
| 108 |
|
| 109 |
+
# Get model configuration
|
| 110 |
config = model.config
|
| 111 |
max_length = config.max_position_embeddings
|
| 112 |
|
| 113 |
+
# Define input sequences
|
| 114 |
sequences = [
|
| 115 |
"ATGAGGTGGCAAGAAATGGGCTAC",
|
| 116 |
"GAATTCCATGAGGCTATAGAATAATCTAAGAGAAAT"
|
| 117 |
]
|
| 118 |
|
| 119 |
+
# Truncate each sequence to the nearest multiple of 6
|
| 120 |
+
processed_sequences = [tokenizer.bos_token + seq[:len(seq)//6*6] for seq in sequences]
|
| 121 |
+
|
| 122 |
+
# Tokenization
|
| 123 |
tokenizer.padding_side = "right"
|
| 124 |
inputs = tokenizer(
|
| 125 |
+
processed_sequences,
|
| 126 |
add_special_tokens=True,
|
| 127 |
return_tensors="pt",
|
| 128 |
padding=True,
|
|
|
|
| 130 |
max_length=max_length
|
| 131 |
)
|
| 132 |
|
| 133 |
+
# Model Inference
|
| 134 |
with torch.inference_mode():
|
| 135 |
outputs = model(**inputs, output_hidden_states=True)
|
| 136 |
|
| 137 |
+
hidden_states = outputs.hidden_states[-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
attention_mask = inputs["attention_mask"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
+
# Option 1: Last token (EOS) embedding
|
| 141 |
+
last_token_indices = attention_mask.sum(dim=1) - 1
|
| 142 |
+
eos_embeddings = hidden_states[torch.arange(hidden_states.size(0)), last_token_indices, :]
|
| 143 |
+
|
| 144 |
+
# Option 2: Mean pooling over all tokens
|
| 145 |
+
expanded_mask = attention_mask.unsqueeze(-1).expand(hidden_states.size()).to(torch.float32)
|
| 146 |
+
sum_embeddings = torch.sum(hidden_states * expanded_mask, dim=1)
|
| 147 |
+
mean_embeddings = sum_embeddings / expanded_mask.sum(dim=1)
|
| 148 |
+
|
| 149 |
+
# Output
|
| 150 |
+
print("EOS (Last Token) Embeddings:", eos_embeddings)
|
| 151 |
+
print("Mean Pooling Embeddings:", mean_embeddings)
|
| 152 |
+
|
| 153 |
+
# ============================================================================
|
| 154 |
+
# Additional notes:
|
| 155 |
+
# - The preprocessing step ensures sequences are multiples of 6 for 6-mer tokenizer
|
| 156 |
+
# - For causal LM, the last token embedding (EOS) is commonly used
|
| 157 |
+
# - Mean pooling considers all tokens including BOS and content tokens
|
| 158 |
+
# - The choice depends on your downstream task requirements
|
| 159 |
+
# - Both methods handle variable sequence lengths via attention mask
|
| 160 |
+
# ============================================================================
|
| 161 |
|
| 162 |
```
|
| 163 |
|