tzzte commited on
Commit
f7780e0
·
1 Parent(s): 7d100b5
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ g_00500000 filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/linzhihang/zhangyuhao/ACLlama_s2s/output/S2S/S2S_finetune_small_lr3e-5_magpie-slice-unit-languge-new-0717-filter_kd_offline_base_merge_0717",
3
+ "adapter_size": 1280,
4
+ "architectures": [
5
+ "ACLlamaForCausalLM"
6
+ ],
7
+ "attention_bias": false,
8
+ "attention_dropout": 0.0,
9
+ "audio_token_len": 10,
10
+ "audio_tower": "/linzhihang/LLMs/whisper-v3",
11
+ "bos_token_id": 128000,
12
+ "eos_token_id": [
13
+ 128001,
14
+ 128008,
15
+ 128009
16
+ ],
17
+ "head_dim": 128,
18
+ "hidden_act": "silu",
19
+ "hidden_size": 3072,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 8192,
22
+ "max_position_embeddings": 131072,
23
+ "mlp_bias": false,
24
+ "model_type": "ACLlama",
25
+ "num_attention_heads": 24,
26
+ "num_hidden_layers": 28,
27
+ "num_key_value_heads": 8,
28
+ "pretraining_tp": 1,
29
+ "rms_norm_eps": 1e-05,
30
+ "rope_scaling": {
31
+ "factor": 32.0,
32
+ "high_freq_factor": 4.0,
33
+ "low_freq_factor": 1.0,
34
+ "original_max_position_embeddings": 8192,
35
+ "rope_type": "llama3"
36
+ },
37
+ "rope_theta": 500000.0,
38
+ "tie_word_embeddings": true,
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.48.1",
41
+ "unit_output": "finetune_kd",
42
+ "unit_vocab": "/linzhihang/zhangyuhao/unit_language/v5.8k.dict",
43
+ "unit_vocab_size": 7801,
44
+ "use_cache": false,
45
+ "vocab_size": 128257
46
+ }
finetune_lora_llama3.1_8B_Instruct_s2s_zyh_3B.sh ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ source /linzhihang/conda_env/init.sh
2
+ conda activate s2s
3
+ cd /linzhihang/zhangyuhao/ACLlama_s2s/scripts
4
+
5
+ prefix=/linzhihang/zhangyuhao/ACLlama_s2s
6
+
7
+ # NAME
8
+ TASK=S2S
9
+ stage=finetune # edit in config
10
+ model_size=small # edit in config
11
+ lr=3e-5
12
+ # subtag=shareEmbW_CR_0507_base_Echox_s2s_pretrained_0503
13
+ # subtag=FirstTurnS2T+aligner_0505
14
+ # subtag=QA_OneTurn+aligner_Lora_0510
15
+ # subtag=ASR_UnitLanguage_4gram_BPE+aligner_0513
16
+ # subtag=QA_OneTurn_ALL_Lora_0516
17
+ # subtag=QA_OneTurn_ALL_Lora_0517
18
+ #subtag=QA_OneTurn_ALL_Lora_0618_newGen_80k_spm_epoch10-embedcon-10epoch-large-adapter-add-prefix
19
+ subtag=kd_offline_base_merge_0819_bench
20
+
21
+
22
+
23
+ # base_model=/mnt/speech/zhangyuhao/text_to_speech/ACLlama_t2u/Echox_s2s_0516 # unit
24
+ #base_model=/linzhihang/zhangyuhao/ACLlama_s2s/Echox_s2s_unit_language_0529 # unit language
25
+ #base_model=/linzhihang/zhangyuhao/ACLlama_s2s/Echox_s2s_unit_0706 # unit language
26
+ base_model=/linzhihang/zhangyuhao/ACLlama_s2s/output/S2S/S2S_finetune_small_lr3e-5_magpie-slice-unit-languge-new-0717-filter_kd_offline_base_merge_0717
27
+ #/linzhihang/zhangyuhao/ACLlama_s2s/output/S2S/S2S_finetune_small_lr3e-5_S2S-KD-unit-new-0816-filter-3B_kd_offline_base_merge_0816
28
+
29
+ # DATA
30
+
31
+ # data_json=/linzhihang/zhangyuhao/ACLlama_s2s/data/magpie_wer-filter-kd-40k-echo-ul-spm.json
32
+ #data_json=/linzhihang/zhangyuhao/ACLlama_s2s/data/magpie-slice-unit-languge-new-0618.json
33
+ #data_json=/linzhihang/zhangyuhao/ACLlama_s2s/data/magpie-slice-unit-languge-new-0629-filter.json
34
+ #data_json=/linzhihang/zhangyuhao/ACLlama_s2s/data/magpie-slice-unit-languge-new-0706-filter.json
35
+ data_json=/linzhihang/zhangyuhao/ACLlama_s2s/data/S2S-KD-unit-language-new-0819-3B-bench-filter.json
36
+ #S2S-KD-unit-new-0819-3B-bench-filter.json
37
+ #S2S-KD-unit-new-0816-filter-3B.json
38
+ #magpie-slice-unit-languge-new-0717-filter.json
39
+
40
+
41
+
42
+ training_set=${TASK}_${stage}_${model_size}_lr${lr}
43
+ model_tag="${training_set}_$(basename "$data_json" .json)_${subtag}"
44
+
45
+ checkpoint_dir=$prefix/output/$TASK/$model_tag
46
+ echo $checkpoint_dir
47
+ mkdir -p $checkpoint_dir
48
+ cp $0 $checkpoint_dir/
49
+
50
+ # CMD
51
+ NCCL_P2P_DISABLE=1 \
52
+ NCCL_IB_DISABLE=1 \
53
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
54
+ torchrun \
55
+ --nproc_per_node 8 \
56
+ --nnodes 1 \
57
+ --node_rank 0 \
58
+ --master_addr localhost \
59
+ --master_port 7897 \
60
+ $prefix/finetune_acllama_s2s_zyh.py \
61
+ --audio_model_name_or_path "/linzhihang/LLMs/whisper-v3" \
62
+ --text_model_name_or_path $base_model \
63
+ --data_path "$data_json" \
64
+ --fp16 True \
65
+ --output_dir "$checkpoint_dir" \
66
+ --num_train_epochs 1 \
67
+ --per_device_train_batch_size 1 \
68
+ --per_device_eval_batch_size 1 \
69
+ --gradient_accumulation_steps 1 \
70
+ --evaluation_strategy "no" \
71
+ --save_strategy "steps" \
72
+ --save_steps 200 \
73
+ --save_total_limit 1 \
74
+ --learning_rate $lr \
75
+ --weight_decay 0.1 \
76
+ --adam_beta2 0.95 \
77
+ --warmup_ratio 0.01 \
78
+ --lr_scheduler_type "inverse_sqrt" \
79
+ --logging_steps 1 \
80
+ --report_to "none" \
81
+ --model_max_length 1024 \
82
+ --gradient_checkpointing True \
83
+ --lazy_preprocess True \
84
+ --deepspeed "$prefix/config/ds_config_zero2.json" #\
85
+ #--use_lora #> $checkpoint_dir/train.log # 2>&1
86
+
87
+ # --use_lora
88
+ #--data_path "$prefix/data/libri_train_update.json" \
89
+ #--text_model_name_or_path "/mnt/user/zhangyuhao/LLM/llama3-instruct/llama3_1-8B/" \
90
+ #--data_path "../data/libri_train_other460.json" \
91
+ #--data_path "../data/train_mt_orgnize.json" \
g_00500000 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d1f7188b95b06304bc05e524fddf93c7fe682fdd93acff022685663a5e26b97
3
+ size 54051213
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.48.1"
12
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28a9f887c592e957a5cd31b9bdfb0386d7042e4dceb5a861ff4ce80507369f2f
3
+ size 4965805056
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e621a936f89e828103064bc348ac0f4c4224d8c87c74fba3f5bc7ac719fa0b06
3
+ size 3619536920
model.safetensors.index.json ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8585302016
4
+ },
5
+ "weight_map": {
6
+ "model.asr_transformer_encoder.layers.0.linear1.bias": "model-00002-of-00002.safetensors",
7
+ "model.asr_transformer_encoder.layers.0.linear1.weight": "model-00002-of-00002.safetensors",
8
+ "model.asr_transformer_encoder.layers.0.linear2.bias": "model-00002-of-00002.safetensors",
9
+ "model.asr_transformer_encoder.layers.0.linear2.weight": "model-00002-of-00002.safetensors",
10
+ "model.asr_transformer_encoder.layers.0.norm1.bias": "model-00002-of-00002.safetensors",
11
+ "model.asr_transformer_encoder.layers.0.norm1.weight": "model-00002-of-00002.safetensors",
12
+ "model.asr_transformer_encoder.layers.0.norm2.bias": "model-00002-of-00002.safetensors",
13
+ "model.asr_transformer_encoder.layers.0.norm2.weight": "model-00002-of-00002.safetensors",
14
+ "model.asr_transformer_encoder.layers.0.self_attn.in_proj_bias": "model-00002-of-00002.safetensors",
15
+ "model.asr_transformer_encoder.layers.0.self_attn.in_proj_weight": "model-00002-of-00002.safetensors",
16
+ "model.asr_transformer_encoder.layers.0.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
17
+ "model.asr_transformer_encoder.layers.0.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
18
+ "model.audio_feature_head.weight": "model-00002-of-00002.safetensors",
19
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.lbm.atten_layer_norm.bias": "model-00002-of-00002.safetensors",
273
+ "model.lbm.atten_layer_norm.weight": "model-00002-of-00002.safetensors",
274
+ "model.lbm.encoder_attn.in_proj_bias": "model-00002-of-00002.safetensors",
275
+ "model.lbm.encoder_attn.in_proj_weight": "model-00002-of-00002.safetensors",
276
+ "model.lbm.encoder_attn.out_proj.bias": "model-00002-of-00002.safetensors",
277
+ "model.lbm.encoder_attn.out_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.mm_projector1.bias": "model-00002-of-00002.safetensors",
279
+ "model.mm_projector1.weight": "model-00002-of-00002.safetensors",
280
+ "model.norm.weight": "model-00002-of-00002.safetensors",
281
+ "model.out_norm.bias": "model-00002-of-00002.safetensors",
282
+ "model.out_norm.weight": "model-00002-of-00002.safetensors",
283
+ "unit_translator.adapter.bias": "model-00002-of-00002.safetensors",
284
+ "unit_translator.adapter.weight": "model-00002-of-00002.safetensors",
285
+ "unit_translator.aligner_MLP.0.bias": "model-00002-of-00002.safetensors",
286
+ "unit_translator.aligner_MLP.0.weight": "model-00002-of-00002.safetensors",
287
+ "unit_translator.aligner_MLP.3.bias": "model-00002-of-00002.safetensors",
288
+ "unit_translator.aligner_MLP.3.weight": "model-00002-of-00002.safetensors",
289
+ "unit_translator.lm_head.weight": "model-00002-of-00002.safetensors",
290
+ "unit_translator.model.embed_tokens.weight": "model-00002-of-00002.safetensors",
291
+ "unit_translator.model.layers.0.input_layernorm.weight": "model-00002-of-00002.safetensors",
292
+ "unit_translator.model.layers.0.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
293
+ "unit_translator.model.layers.0.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
294
+ "unit_translator.model.layers.0.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
295
+ "unit_translator.model.layers.0.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
296
+ "unit_translator.model.layers.0.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
297
+ "unit_translator.model.layers.0.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
298
+ "unit_translator.model.layers.0.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
299
+ "unit_translator.model.layers.0.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
300
+ "unit_translator.model.layers.1.input_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "unit_translator.model.layers.1.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
302
+ "unit_translator.model.layers.1.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
303
+ "unit_translator.model.layers.1.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
304
+ "unit_translator.model.layers.1.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
305
+ "unit_translator.model.layers.1.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
306
+ "unit_translator.model.layers.1.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
307
+ "unit_translator.model.layers.1.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
308
+ "unit_translator.model.layers.1.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
309
+ "unit_translator.model.layers.2.input_layernorm.weight": "model-00002-of-00002.safetensors",
310
+ "unit_translator.model.layers.2.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
311
+ "unit_translator.model.layers.2.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
312
+ "unit_translator.model.layers.2.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
313
+ "unit_translator.model.layers.2.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
314
+ "unit_translator.model.layers.2.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "unit_translator.model.layers.2.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "unit_translator.model.layers.2.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
317
+ "unit_translator.model.layers.2.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
318
+ "unit_translator.model.layers.3.input_layernorm.weight": "model-00002-of-00002.safetensors",
319
+ "unit_translator.model.layers.3.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
320
+ "unit_translator.model.layers.3.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
321
+ "unit_translator.model.layers.3.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
322
+ "unit_translator.model.layers.3.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
323
+ "unit_translator.model.layers.3.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
324
+ "unit_translator.model.layers.3.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
325
+ "unit_translator.model.layers.3.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
326
+ "unit_translator.model.layers.3.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
327
+ "unit_translator.model.layers.4.input_layernorm.weight": "model-00002-of-00002.safetensors",
328
+ "unit_translator.model.layers.4.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
329
+ "unit_translator.model.layers.4.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
330
+ "unit_translator.model.layers.4.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
331
+ "unit_translator.model.layers.4.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
332
+ "unit_translator.model.layers.4.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
333
+ "unit_translator.model.layers.4.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
334
+ "unit_translator.model.layers.4.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
335
+ "unit_translator.model.layers.4.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
336
+ "unit_translator.model.layers.5.input_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "unit_translator.model.layers.5.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
338
+ "unit_translator.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
339
+ "unit_translator.model.layers.5.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
340
+ "unit_translator.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
341
+ "unit_translator.model.layers.5.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
342
+ "unit_translator.model.layers.5.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
343
+ "unit_translator.model.layers.5.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
344
+ "unit_translator.model.layers.5.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
345
+ "unit_translator.model.norm.weight": "model-00002-of-00002.safetensors",
346
+ "unit_translator.unit_embedding.weight": "model-00002-of-00002.safetensors"
347
+ }
348
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|eot_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:856f538e5cb73db3731eb9f10efb325225743abbfd32d20180383a53e135c349
3
+ size 18733690
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,2618 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 368,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.002717391304347826,
13
+ "grad_norm": 0.0,
14
+ "learning_rate": 0,
15
+ "loss": 0.5829,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.005434782608695652,
20
+ "grad_norm": 0.0,
21
+ "learning_rate": 0,
22
+ "loss": 0.685,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.008152173913043478,
27
+ "grad_norm": 3.0868945121765137,
28
+ "learning_rate": 0.0,
29
+ "loss": 0.7212,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.010869565217391304,
34
+ "grad_norm": 3.4650824069976807,
35
+ "learning_rate": 1.5e-05,
36
+ "loss": 0.6836,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.01358695652173913,
41
+ "grad_norm": 3.4650824069976807,
42
+ "learning_rate": 1.5e-05,
43
+ "loss": 0.5367,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.016304347826086956,
48
+ "grad_norm": 2.637908935546875,
49
+ "learning_rate": 2.3774437510817346e-05,
50
+ "loss": 0.6148,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.019021739130434784,
55
+ "grad_norm": 1.4185562133789062,
56
+ "learning_rate": 3e-05,
57
+ "loss": 0.562,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.021739130434782608,
62
+ "grad_norm": 3.299220323562622,
63
+ "learning_rate": 3e-05,
64
+ "loss": 0.6763,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.024456521739130436,
69
+ "grad_norm": 3.9320366382598877,
70
+ "learning_rate": 3e-05,
71
+ "loss": 0.4243,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.02717391304347826,
76
+ "grad_norm": 4.625139236450195,
77
+ "learning_rate": 3e-05,
78
+ "loss": 0.6627,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.029891304347826088,
83
+ "grad_norm": 4.016164779663086,
84
+ "learning_rate": 3e-05,
85
+ "loss": 0.5826,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.03260869565217391,
90
+ "grad_norm": 3.5085506439208984,
91
+ "learning_rate": 3e-05,
92
+ "loss": 0.7494,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.035326086956521736,
97
+ "grad_norm": 3.135777235031128,
98
+ "learning_rate": 3e-05,
99
+ "loss": 0.5124,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.03804347826086957,
104
+ "grad_norm": 2.25691294670105,
105
+ "learning_rate": 3e-05,
106
+ "loss": 0.5156,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.04076086956521739,
111
+ "grad_norm": 2.6235625743865967,
112
+ "learning_rate": 3e-05,
113
+ "loss": 0.5773,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.043478260869565216,
118
+ "grad_norm": 1.977939248085022,
119
+ "learning_rate": 3e-05,
120
+ "loss": 0.5534,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.04619565217391304,
125
+ "grad_norm": 3.1098241806030273,
126
+ "learning_rate": 3e-05,
127
+ "loss": 0.7569,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.04891304347826087,
132
+ "grad_norm": 3.5367255210876465,
133
+ "learning_rate": 3e-05,
134
+ "loss": 0.6384,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.051630434782608696,
139
+ "grad_norm": 2.057596445083618,
140
+ "learning_rate": 3e-05,
141
+ "loss": 0.5811,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.05434782608695652,
146
+ "grad_norm": 1.8991059064865112,
147
+ "learning_rate": 3e-05,
148
+ "loss": 0.4392,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.057065217391304345,
153
+ "grad_norm": 2.431248188018799,
154
+ "learning_rate": 3e-05,
155
+ "loss": 0.5292,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.059782608695652176,
160
+ "grad_norm": 2.1876354217529297,
161
+ "learning_rate": 3e-05,
162
+ "loss": 0.4795,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.0625,
167
+ "grad_norm": 2.018975257873535,
168
+ "learning_rate": 3e-05,
169
+ "loss": 0.5681,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.06521739130434782,
174
+ "grad_norm": 1.5382078886032104,
175
+ "learning_rate": 3e-05,
176
+ "loss": 0.4643,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.06793478260869565,
181
+ "grad_norm": 2.18375563621521,
182
+ "learning_rate": 3e-05,
183
+ "loss": 0.4675,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.07065217391304347,
188
+ "grad_norm": 1.810476303100586,
189
+ "learning_rate": 3e-05,
190
+ "loss": 0.5259,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.07336956521739131,
195
+ "grad_norm": 2.9333322048187256,
196
+ "learning_rate": 3e-05,
197
+ "loss": 0.6795,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.07608695652173914,
202
+ "grad_norm": 1.963409185409546,
203
+ "learning_rate": 3e-05,
204
+ "loss": 0.5022,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.07880434782608696,
209
+ "grad_norm": 1.5288830995559692,
210
+ "learning_rate": 3e-05,
211
+ "loss": 0.5481,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.08152173913043478,
216
+ "grad_norm": 2.095547676086426,
217
+ "learning_rate": 3e-05,
218
+ "loss": 0.5427,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.08423913043478261,
223
+ "grad_norm": 2.3924880027770996,
224
+ "learning_rate": 3e-05,
225
+ "loss": 0.5936,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.08695652173913043,
230
+ "grad_norm": 2.6183862686157227,
231
+ "learning_rate": 3e-05,
232
+ "loss": 0.5452,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.08967391304347826,
237
+ "grad_norm": 1.9050800800323486,
238
+ "learning_rate": 3e-05,
239
+ "loss": 0.4507,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.09239130434782608,
244
+ "grad_norm": 2.0894551277160645,
245
+ "learning_rate": 3e-05,
246
+ "loss": 0.6293,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.09510869565217392,
251
+ "grad_norm": 2.201720952987671,
252
+ "learning_rate": 3e-05,
253
+ "loss": 0.4793,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.09782608695652174,
258
+ "grad_norm": 2.516624927520752,
259
+ "learning_rate": 3e-05,
260
+ "loss": 0.5658,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.10054347826086957,
265
+ "grad_norm": 1.703904628753662,
266
+ "learning_rate": 3e-05,
267
+ "loss": 0.4968,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.10326086956521739,
272
+ "grad_norm": 2.972416400909424,
273
+ "learning_rate": 3e-05,
274
+ "loss": 0.7267,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.10597826086956522,
279
+ "grad_norm": 1.9167985916137695,
280
+ "learning_rate": 3e-05,
281
+ "loss": 0.4971,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.10869565217391304,
286
+ "grad_norm": 1.7569814920425415,
287
+ "learning_rate": 3e-05,
288
+ "loss": 0.5191,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.11141304347826086,
293
+ "grad_norm": 2.4087071418762207,
294
+ "learning_rate": 3e-05,
295
+ "loss": 0.5737,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.11413043478260869,
300
+ "grad_norm": 3.517263650894165,
301
+ "learning_rate": 3e-05,
302
+ "loss": 0.5688,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.11684782608695653,
307
+ "grad_norm": 3.5090434551239014,
308
+ "learning_rate": 3e-05,
309
+ "loss": 0.4961,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.11956521739130435,
314
+ "grad_norm": 3.181145668029785,
315
+ "learning_rate": 3e-05,
316
+ "loss": 0.8124,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.12228260869565218,
321
+ "grad_norm": 3.588538885116577,
322
+ "learning_rate": 3e-05,
323
+ "loss": 0.5766,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.125,
328
+ "grad_norm": 3.123659610748291,
329
+ "learning_rate": 3e-05,
330
+ "loss": 0.7286,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.12771739130434784,
335
+ "grad_norm": 2.6902639865875244,
336
+ "learning_rate": 3e-05,
337
+ "loss": 0.6418,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.13043478260869565,
342
+ "grad_norm": 1.6611530780792236,
343
+ "learning_rate": 3e-05,
344
+ "loss": 0.5357,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.1331521739130435,
349
+ "grad_norm": 2.4058802127838135,
350
+ "learning_rate": 3e-05,
351
+ "loss": 0.5909,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.1358695652173913,
356
+ "grad_norm": 2.4058802127838135,
357
+ "learning_rate": 3e-05,
358
+ "loss": 0.7068,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.13858695652173914,
363
+ "grad_norm": 2.513307809829712,
364
+ "learning_rate": 3e-05,
365
+ "loss": 0.5384,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.14130434782608695,
370
+ "grad_norm": 2.7813773155212402,
371
+ "learning_rate": 3e-05,
372
+ "loss": 0.5887,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.14402173913043478,
377
+ "grad_norm": 1.950292706489563,
378
+ "learning_rate": 3e-05,
379
+ "loss": 0.5399,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.14673913043478262,
384
+ "grad_norm": 1.7724437713623047,
385
+ "learning_rate": 3e-05,
386
+ "loss": 0.4234,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.14945652173913043,
391
+ "grad_norm": 3.3404788970947266,
392
+ "learning_rate": 3e-05,
393
+ "loss": 0.7648,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.15217391304347827,
398
+ "grad_norm": 2.424994468688965,
399
+ "learning_rate": 3e-05,
400
+ "loss": 0.4959,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.15489130434782608,
405
+ "grad_norm": 2.12221097946167,
406
+ "learning_rate": 3e-05,
407
+ "loss": 0.6107,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.15760869565217392,
412
+ "grad_norm": 3.7846357822418213,
413
+ "learning_rate": 3e-05,
414
+ "loss": 0.6991,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.16032608695652173,
419
+ "grad_norm": 1.7821156978607178,
420
+ "learning_rate": 3e-05,
421
+ "loss": 0.4864,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.16304347826086957,
426
+ "grad_norm": 1.4435001611709595,
427
+ "learning_rate": 3e-05,
428
+ "loss": 0.4782,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.16576086956521738,
433
+ "grad_norm": 2.097719669342041,
434
+ "learning_rate": 3e-05,
435
+ "loss": 0.4761,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.16847826086956522,
440
+ "grad_norm": 2.082066774368286,
441
+ "learning_rate": 3e-05,
442
+ "loss": 0.4565,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.17119565217391305,
447
+ "grad_norm": 1.8222287893295288,
448
+ "learning_rate": 3e-05,
449
+ "loss": 0.5573,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.17391304347826086,
454
+ "grad_norm": 2.819382667541504,
455
+ "learning_rate": 3e-05,
456
+ "loss": 0.5613,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.1766304347826087,
461
+ "grad_norm": 1.8486182689666748,
462
+ "learning_rate": 3e-05,
463
+ "loss": 0.5446,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.1793478260869565,
468
+ "grad_norm": 1.4942399263381958,
469
+ "learning_rate": 3e-05,
470
+ "loss": 0.5744,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.18206521739130435,
475
+ "grad_norm": 1.9929646253585815,
476
+ "learning_rate": 3e-05,
477
+ "loss": 0.4258,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.18478260869565216,
482
+ "grad_norm": 1.7978485822677612,
483
+ "learning_rate": 3e-05,
484
+ "loss": 0.4694,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.1875,
489
+ "grad_norm": 2.185476064682007,
490
+ "learning_rate": 3e-05,
491
+ "loss": 0.5109,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.19021739130434784,
496
+ "grad_norm": 2.129399538040161,
497
+ "learning_rate": 3e-05,
498
+ "loss": 0.4594,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.19293478260869565,
503
+ "grad_norm": 2.488927125930786,
504
+ "learning_rate": 3e-05,
505
+ "loss": 0.5293,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.1956521739130435,
510
+ "grad_norm": 2.257550001144409,
511
+ "learning_rate": 3e-05,
512
+ "loss": 0.5494,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.1983695652173913,
517
+ "grad_norm": 2.4466147422790527,
518
+ "learning_rate": 3e-05,
519
+ "loss": 0.4834,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.20108695652173914,
524
+ "grad_norm": 2.2242984771728516,
525
+ "learning_rate": 3e-05,
526
+ "loss": 0.4992,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.20380434782608695,
531
+ "grad_norm": 2.867558002471924,
532
+ "learning_rate": 3e-05,
533
+ "loss": 0.7131,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.20652173913043478,
538
+ "grad_norm": 1.8966355323791504,
539
+ "learning_rate": 3e-05,
540
+ "loss": 0.5512,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.20923913043478262,
545
+ "grad_norm": 3.1431808471679688,
546
+ "learning_rate": 3e-05,
547
+ "loss": 0.4581,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.21195652173913043,
552
+ "grad_norm": 3.1641836166381836,
553
+ "learning_rate": 3e-05,
554
+ "loss": 0.56,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.21467391304347827,
559
+ "grad_norm": 1.869903326034546,
560
+ "learning_rate": 3e-05,
561
+ "loss": 0.5766,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.21739130434782608,
566
+ "grad_norm": 2.7795424461364746,
567
+ "learning_rate": 3e-05,
568
+ "loss": 0.5911,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.22010869565217392,
573
+ "grad_norm": 2.3112289905548096,
574
+ "learning_rate": 3e-05,
575
+ "loss": 0.5765,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.22282608695652173,
580
+ "grad_norm": 1.8768959045410156,
581
+ "learning_rate": 3e-05,
582
+ "loss": 0.4489,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.22554347826086957,
587
+ "grad_norm": 1.8480079174041748,
588
+ "learning_rate": 3e-05,
589
+ "loss": 0.6242,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.22826086956521738,
594
+ "grad_norm": 2.04072904586792,
595
+ "learning_rate": 3e-05,
596
+ "loss": 0.5061,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.23097826086956522,
601
+ "grad_norm": 1.778836965560913,
602
+ "learning_rate": 3e-05,
603
+ "loss": 0.5375,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.23369565217391305,
608
+ "grad_norm": 2.0883471965789795,
609
+ "learning_rate": 3e-05,
610
+ "loss": 0.5375,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.23641304347826086,
615
+ "grad_norm": 1.8592745065689087,
616
+ "learning_rate": 3e-05,
617
+ "loss": 0.4972,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.2391304347826087,
622
+ "grad_norm": 1.817451000213623,
623
+ "learning_rate": 3e-05,
624
+ "loss": 0.5005,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.2418478260869565,
629
+ "grad_norm": 3.28531813621521,
630
+ "learning_rate": 3e-05,
631
+ "loss": 0.6246,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.24456521739130435,
636
+ "grad_norm": 1.707846760749817,
637
+ "learning_rate": 3e-05,
638
+ "loss": 0.4922,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.24728260869565216,
643
+ "grad_norm": 2.3756139278411865,
644
+ "learning_rate": 3e-05,
645
+ "loss": 0.5826,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.25,
650
+ "grad_norm": 1.2630126476287842,
651
+ "learning_rate": 3e-05,
652
+ "loss": 0.5304,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.25271739130434784,
657
+ "grad_norm": 2.259389877319336,
658
+ "learning_rate": 3e-05,
659
+ "loss": 0.5615,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.2554347826086957,
664
+ "grad_norm": 1.3903180360794067,
665
+ "learning_rate": 3e-05,
666
+ "loss": 0.4406,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.25815217391304346,
671
+ "grad_norm": 1.9753227233886719,
672
+ "learning_rate": 3e-05,
673
+ "loss": 0.4809,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.2608695652173913,
678
+ "grad_norm": 1.8999621868133545,
679
+ "learning_rate": 3e-05,
680
+ "loss": 0.5946,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.26358695652173914,
685
+ "grad_norm": 1.9928959608078003,
686
+ "learning_rate": 3e-05,
687
+ "loss": 0.5532,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.266304347826087,
692
+ "grad_norm": 1.7581721544265747,
693
+ "learning_rate": 3e-05,
694
+ "loss": 0.425,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.26902173913043476,
699
+ "grad_norm": 3.1840996742248535,
700
+ "learning_rate": 3e-05,
701
+ "loss": 0.6684,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.2717391304347826,
706
+ "grad_norm": 2.4350733757019043,
707
+ "learning_rate": 3e-05,
708
+ "loss": 0.5354,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.27445652173913043,
713
+ "grad_norm": 2.1404078006744385,
714
+ "learning_rate": 3e-05,
715
+ "loss": 0.4751,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.27717391304347827,
720
+ "grad_norm": 3.169942617416382,
721
+ "learning_rate": 3e-05,
722
+ "loss": 0.7145,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.2798913043478261,
727
+ "grad_norm": 1.2857766151428223,
728
+ "learning_rate": 3e-05,
729
+ "loss": 0.4536,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.2826086956521739,
734
+ "grad_norm": 2.7525951862335205,
735
+ "learning_rate": 3e-05,
736
+ "loss": 0.5892,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.28532608695652173,
741
+ "grad_norm": 1.6672691106796265,
742
+ "learning_rate": 3e-05,
743
+ "loss": 0.5593,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.28804347826086957,
748
+ "grad_norm": 1.2421808242797852,
749
+ "learning_rate": 3e-05,
750
+ "loss": 0.4584,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.2907608695652174,
755
+ "grad_norm": 3.0662600994110107,
756
+ "learning_rate": 3e-05,
757
+ "loss": 0.564,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.29347826086956524,
762
+ "grad_norm": 1.9544175863265991,
763
+ "learning_rate": 3e-05,
764
+ "loss": 0.5583,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.296195652173913,
769
+ "grad_norm": 2.374974250793457,
770
+ "learning_rate": 3e-05,
771
+ "loss": 0.5546,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.29891304347826086,
776
+ "grad_norm": 1.730804443359375,
777
+ "learning_rate": 3e-05,
778
+ "loss": 0.5021,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.3016304347826087,
783
+ "grad_norm": 2.308568239212036,
784
+ "learning_rate": 3e-05,
785
+ "loss": 0.6143,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.30434782608695654,
790
+ "grad_norm": 2.2530875205993652,
791
+ "learning_rate": 3e-05,
792
+ "loss": 0.5695,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.3070652173913043,
797
+ "grad_norm": 1.4939433336257935,
798
+ "learning_rate": 3e-05,
799
+ "loss": 0.4982,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.30978260869565216,
804
+ "grad_norm": 1.8290050029754639,
805
+ "learning_rate": 3e-05,
806
+ "loss": 0.4945,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.3125,
811
+ "grad_norm": 2.5083842277526855,
812
+ "learning_rate": 3e-05,
813
+ "loss": 0.4693,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.31521739130434784,
818
+ "grad_norm": 3.2338268756866455,
819
+ "learning_rate": 3e-05,
820
+ "loss": 0.6578,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.3179347826086957,
825
+ "grad_norm": 2.3117527961730957,
826
+ "learning_rate": 3e-05,
827
+ "loss": 0.5395,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.32065217391304346,
832
+ "grad_norm": 1.5958501100540161,
833
+ "learning_rate": 3e-05,
834
+ "loss": 0.4975,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.3233695652173913,
839
+ "grad_norm": 2.4708805084228516,
840
+ "learning_rate": 3e-05,
841
+ "loss": 0.4652,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.32608695652173914,
846
+ "grad_norm": 1.6753262281417847,
847
+ "learning_rate": 3e-05,
848
+ "loss": 0.54,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.328804347826087,
853
+ "grad_norm": 2.4457895755767822,
854
+ "learning_rate": 3e-05,
855
+ "loss": 0.5612,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.33152173913043476,
860
+ "grad_norm": 2.059176445007324,
861
+ "learning_rate": 3e-05,
862
+ "loss": 0.6599,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.3342391304347826,
867
+ "grad_norm": 2.1220273971557617,
868
+ "learning_rate": 3e-05,
869
+ "loss": 0.5256,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.33695652173913043,
874
+ "grad_norm": 1.756909728050232,
875
+ "learning_rate": 3e-05,
876
+ "loss": 0.4839,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.33967391304347827,
881
+ "grad_norm": 2.6595497131347656,
882
+ "learning_rate": 3e-05,
883
+ "loss": 0.626,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.3423913043478261,
888
+ "grad_norm": 2.2510428428649902,
889
+ "learning_rate": 3e-05,
890
+ "loss": 0.5029,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.3451086956521739,
895
+ "grad_norm": 3.559722423553467,
896
+ "learning_rate": 3e-05,
897
+ "loss": 0.647,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.34782608695652173,
902
+ "grad_norm": 2.1882569789886475,
903
+ "learning_rate": 3e-05,
904
+ "loss": 0.6679,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.35054347826086957,
909
+ "grad_norm": 2.5354092121124268,
910
+ "learning_rate": 3e-05,
911
+ "loss": 0.6344,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.3532608695652174,
916
+ "grad_norm": 2.0643749237060547,
917
+ "learning_rate": 3e-05,
918
+ "loss": 0.4314,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.35597826086956524,
923
+ "grad_norm": 1.6011096239089966,
924
+ "learning_rate": 3e-05,
925
+ "loss": 0.4533,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.358695652173913,
930
+ "grad_norm": 2.553201913833618,
931
+ "learning_rate": 3e-05,
932
+ "loss": 0.6543,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.36141304347826086,
937
+ "grad_norm": 2.410280704498291,
938
+ "learning_rate": 3e-05,
939
+ "loss": 0.5308,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.3641304347826087,
944
+ "grad_norm": 1.7064554691314697,
945
+ "learning_rate": 3e-05,
946
+ "loss": 0.4105,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.36684782608695654,
951
+ "grad_norm": 2.6405141353607178,
952
+ "learning_rate": 3e-05,
953
+ "loss": 0.5206,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.3695652173913043,
958
+ "grad_norm": 1.699704885482788,
959
+ "learning_rate": 3e-05,
960
+ "loss": 0.6593,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.37228260869565216,
965
+ "grad_norm": 1.8388729095458984,
966
+ "learning_rate": 3e-05,
967
+ "loss": 0.4821,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.375,
972
+ "grad_norm": 2.7615950107574463,
973
+ "learning_rate": 3e-05,
974
+ "loss": 0.5692,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.37771739130434784,
979
+ "grad_norm": 1.835686206817627,
980
+ "learning_rate": 3e-05,
981
+ "loss": 0.5826,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.3804347826086957,
986
+ "grad_norm": 1.6995174884796143,
987
+ "learning_rate": 3e-05,
988
+ "loss": 0.4742,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.38315217391304346,
993
+ "grad_norm": 1.6208698749542236,
994
+ "learning_rate": 3e-05,
995
+ "loss": 0.4437,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.3858695652173913,
1000
+ "grad_norm": 1.2213523387908936,
1001
+ "learning_rate": 3e-05,
1002
+ "loss": 0.4037,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.38858695652173914,
1007
+ "grad_norm": 1.5828511714935303,
1008
+ "learning_rate": 3e-05,
1009
+ "loss": 0.4793,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.391304347826087,
1014
+ "grad_norm": 3.4537761211395264,
1015
+ "learning_rate": 3e-05,
1016
+ "loss": 0.4866,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.39402173913043476,
1021
+ "grad_norm": 1.346982479095459,
1022
+ "learning_rate": 3e-05,
1023
+ "loss": 0.4468,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.3967391304347826,
1028
+ "grad_norm": 3.6017796993255615,
1029
+ "learning_rate": 3e-05,
1030
+ "loss": 0.6744,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.39945652173913043,
1035
+ "grad_norm": 1.896022915840149,
1036
+ "learning_rate": 3e-05,
1037
+ "loss": 0.5816,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.40217391304347827,
1042
+ "grad_norm": 1.970211148262024,
1043
+ "learning_rate": 3e-05,
1044
+ "loss": 0.5449,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.4048913043478261,
1049
+ "grad_norm": 2.315774917602539,
1050
+ "learning_rate": 3e-05,
1051
+ "loss": 0.5042,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.4076086956521739,
1056
+ "grad_norm": 1.7873855829238892,
1057
+ "learning_rate": 3e-05,
1058
+ "loss": 0.5093,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.41032608695652173,
1063
+ "grad_norm": 2.479135036468506,
1064
+ "learning_rate": 3e-05,
1065
+ "loss": 0.6396,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.41304347826086957,
1070
+ "grad_norm": 1.4740537405014038,
1071
+ "learning_rate": 3e-05,
1072
+ "loss": 0.4847,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.4157608695652174,
1077
+ "grad_norm": 1.8202875852584839,
1078
+ "learning_rate": 3e-05,
1079
+ "loss": 0.565,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.41847826086956524,
1084
+ "grad_norm": 2.06355881690979,
1085
+ "learning_rate": 3e-05,
1086
+ "loss": 0.5481,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.421195652173913,
1091
+ "grad_norm": 1.522354245185852,
1092
+ "learning_rate": 3e-05,
1093
+ "loss": 0.4835,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.42391304347826086,
1098
+ "grad_norm": 1.9054198265075684,
1099
+ "learning_rate": 3e-05,
1100
+ "loss": 0.5304,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.4266304347826087,
1105
+ "grad_norm": 1.7483571767807007,
1106
+ "learning_rate": 3e-05,
1107
+ "loss": 0.4882,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.42934782608695654,
1112
+ "grad_norm": 1.8139662742614746,
1113
+ "learning_rate": 3e-05,
1114
+ "loss": 0.6033,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.4320652173913043,
1119
+ "grad_norm": 3.0108718872070312,
1120
+ "learning_rate": 3e-05,
1121
+ "loss": 0.837,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.43478260869565216,
1126
+ "grad_norm": 1.5665092468261719,
1127
+ "learning_rate": 3e-05,
1128
+ "loss": 0.5234,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.4375,
1133
+ "grad_norm": 3.6204946041107178,
1134
+ "learning_rate": 3e-05,
1135
+ "loss": 0.5096,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.44021739130434784,
1140
+ "grad_norm": 2.1590631008148193,
1141
+ "learning_rate": 3e-05,
1142
+ "loss": 0.6107,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.4429347826086957,
1147
+ "grad_norm": 1.8781529664993286,
1148
+ "learning_rate": 3e-05,
1149
+ "loss": 0.5122,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.44565217391304346,
1154
+ "grad_norm": 1.7852369546890259,
1155
+ "learning_rate": 3e-05,
1156
+ "loss": 0.4954,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.4483695652173913,
1161
+ "grad_norm": 1.3662923574447632,
1162
+ "learning_rate": 3e-05,
1163
+ "loss": 0.493,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.45108695652173914,
1168
+ "grad_norm": 2.7863638401031494,
1169
+ "learning_rate": 3e-05,
1170
+ "loss": 0.6855,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.453804347826087,
1175
+ "grad_norm": 2.3714311122894287,
1176
+ "learning_rate": 3e-05,
1177
+ "loss": 0.5858,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.45652173913043476,
1182
+ "grad_norm": 2.097414970397949,
1183
+ "learning_rate": 3e-05,
1184
+ "loss": 0.4895,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.4592391304347826,
1189
+ "grad_norm": 2.0122313499450684,
1190
+ "learning_rate": 3e-05,
1191
+ "loss": 0.4241,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.46195652173913043,
1196
+ "grad_norm": 1.5152671337127686,
1197
+ "learning_rate": 3e-05,
1198
+ "loss": 0.4318,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.46467391304347827,
1203
+ "grad_norm": 2.7088394165039062,
1204
+ "learning_rate": 3e-05,
1205
+ "loss": 0.6514,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.4673913043478261,
1210
+ "grad_norm": 1.5779036283493042,
1211
+ "learning_rate": 3e-05,
1212
+ "loss": 0.4605,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.4701086956521739,
1217
+ "grad_norm": 2.193013906478882,
1218
+ "learning_rate": 3e-05,
1219
+ "loss": 0.6419,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.47282608695652173,
1224
+ "grad_norm": 1.4573429822921753,
1225
+ "learning_rate": 3e-05,
1226
+ "loss": 0.4391,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.47554347826086957,
1231
+ "grad_norm": 1.719489574432373,
1232
+ "learning_rate": 3e-05,
1233
+ "loss": 0.6271,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.4782608695652174,
1238
+ "grad_norm": 1.491647481918335,
1239
+ "learning_rate": 3e-05,
1240
+ "loss": 0.5155,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.48097826086956524,
1245
+ "grad_norm": 2.1597378253936768,
1246
+ "learning_rate": 3e-05,
1247
+ "loss": 0.5132,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.483695652173913,
1252
+ "grad_norm": 1.62423574924469,
1253
+ "learning_rate": 3e-05,
1254
+ "loss": 0.4454,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.48641304347826086,
1259
+ "grad_norm": 2.4392452239990234,
1260
+ "learning_rate": 3e-05,
1261
+ "loss": 0.5913,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.4891304347826087,
1266
+ "grad_norm": 2.407681703567505,
1267
+ "learning_rate": 3e-05,
1268
+ "loss": 0.716,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.49184782608695654,
1273
+ "grad_norm": 2.402573585510254,
1274
+ "learning_rate": 3e-05,
1275
+ "loss": 0.5874,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.4945652173913043,
1280
+ "grad_norm": 1.8457105159759521,
1281
+ "learning_rate": 3e-05,
1282
+ "loss": 0.5029,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.49728260869565216,
1287
+ "grad_norm": 2.4062929153442383,
1288
+ "learning_rate": 3e-05,
1289
+ "loss": 0.6185,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.5,
1294
+ "grad_norm": 2.0781688690185547,
1295
+ "learning_rate": 3e-05,
1296
+ "loss": 0.6093,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.5027173913043478,
1301
+ "grad_norm": 1.5497978925704956,
1302
+ "learning_rate": 3e-05,
1303
+ "loss": 0.5322,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.5054347826086957,
1308
+ "grad_norm": 4.002748489379883,
1309
+ "learning_rate": 3e-05,
1310
+ "loss": 0.7277,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.5081521739130435,
1315
+ "grad_norm": 1.3743958473205566,
1316
+ "learning_rate": 3e-05,
1317
+ "loss": 0.4846,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.5108695652173914,
1322
+ "grad_norm": 1.8466805219650269,
1323
+ "learning_rate": 3e-05,
1324
+ "loss": 0.4154,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.5135869565217391,
1329
+ "grad_norm": 2.3035359382629395,
1330
+ "learning_rate": 3e-05,
1331
+ "loss": 0.5205,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.5163043478260869,
1336
+ "grad_norm": 2.2272605895996094,
1337
+ "learning_rate": 3e-05,
1338
+ "loss": 0.5532,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.5190217391304348,
1343
+ "grad_norm": 1.7287522554397583,
1344
+ "learning_rate": 3e-05,
1345
+ "loss": 0.4787,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.5217391304347826,
1350
+ "grad_norm": 2.0177953243255615,
1351
+ "learning_rate": 3e-05,
1352
+ "loss": 0.4949,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.5244565217391305,
1357
+ "grad_norm": 1.2431449890136719,
1358
+ "learning_rate": 3e-05,
1359
+ "loss": 0.4026,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.5271739130434783,
1364
+ "grad_norm": 1.2249736785888672,
1365
+ "learning_rate": 3e-05,
1366
+ "loss": 0.5167,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.529891304347826,
1371
+ "grad_norm": 1.9964460134506226,
1372
+ "learning_rate": 3e-05,
1373
+ "loss": 0.5396,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.532608695652174,
1378
+ "grad_norm": 1.4250489473342896,
1379
+ "learning_rate": 3e-05,
1380
+ "loss": 0.4755,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.5353260869565217,
1385
+ "grad_norm": 3.141204833984375,
1386
+ "learning_rate": 3e-05,
1387
+ "loss": 0.6342,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.5380434782608695,
1392
+ "grad_norm": 2.3809869289398193,
1393
+ "learning_rate": 3e-05,
1394
+ "loss": 0.5182,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.5407608695652174,
1399
+ "grad_norm": 3.068497896194458,
1400
+ "learning_rate": 3e-05,
1401
+ "loss": 0.789,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.5434782608695652,
1406
+ "grad_norm": 1.3273123502731323,
1407
+ "learning_rate": 3e-05,
1408
+ "loss": 0.5361,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.5461956521739131,
1413
+ "grad_norm": 1.2408298254013062,
1414
+ "learning_rate": 3e-05,
1415
+ "loss": 0.4686,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.5489130434782609,
1420
+ "grad_norm": 2.427406072616577,
1421
+ "learning_rate": 3e-05,
1422
+ "loss": 0.594,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.5516304347826086,
1427
+ "grad_norm": 2.725402593612671,
1428
+ "learning_rate": 3e-05,
1429
+ "loss": 0.5054,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.5543478260869565,
1434
+ "grad_norm": 2.7441318035125732,
1435
+ "learning_rate": 3e-05,
1436
+ "loss": 0.7141,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.5570652173913043,
1441
+ "grad_norm": 1.1885932683944702,
1442
+ "learning_rate": 3e-05,
1443
+ "loss": 0.3824,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.5597826086956522,
1448
+ "grad_norm": 1.8625751733779907,
1449
+ "learning_rate": 3e-05,
1450
+ "loss": 0.5073,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.5625,
1455
+ "grad_norm": 1.8269888162612915,
1456
+ "learning_rate": 3e-05,
1457
+ "loss": 0.5006,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.5652173913043478,
1462
+ "grad_norm": 1.4195995330810547,
1463
+ "learning_rate": 3e-05,
1464
+ "loss": 0.4833,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.5679347826086957,
1469
+ "grad_norm": 1.4971282482147217,
1470
+ "learning_rate": 3e-05,
1471
+ "loss": 0.527,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.5706521739130435,
1476
+ "grad_norm": 2.9385082721710205,
1477
+ "learning_rate": 3e-05,
1478
+ "loss": 0.6193,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.5733695652173914,
1483
+ "grad_norm": 1.6641467809677124,
1484
+ "learning_rate": 3e-05,
1485
+ "loss": 0.6115,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.5760869565217391,
1490
+ "grad_norm": 2.1166892051696777,
1491
+ "learning_rate": 3e-05,
1492
+ "loss": 0.6219,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.5788043478260869,
1497
+ "grad_norm": 2.319002866744995,
1498
+ "learning_rate": 3e-05,
1499
+ "loss": 0.5535,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.5815217391304348,
1504
+ "grad_norm": 2.2194128036499023,
1505
+ "learning_rate": 3e-05,
1506
+ "loss": 0.5677,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.5842391304347826,
1511
+ "grad_norm": 2.779507637023926,
1512
+ "learning_rate": 3e-05,
1513
+ "loss": 0.6392,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.5869565217391305,
1518
+ "grad_norm": 2.3067514896392822,
1519
+ "learning_rate": 3e-05,
1520
+ "loss": 0.6002,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.5896739130434783,
1525
+ "grad_norm": 1.7696046829223633,
1526
+ "learning_rate": 3e-05,
1527
+ "loss": 0.4951,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.592391304347826,
1532
+ "grad_norm": 1.649396538734436,
1533
+ "learning_rate": 3e-05,
1534
+ "loss": 0.4799,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.595108695652174,
1539
+ "grad_norm": 2.204364538192749,
1540
+ "learning_rate": 3e-05,
1541
+ "loss": 0.5045,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.5978260869565217,
1546
+ "grad_norm": 1.8227981328964233,
1547
+ "learning_rate": 3e-05,
1548
+ "loss": 0.5669,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.6005434782608695,
1553
+ "grad_norm": 1.8465766906738281,
1554
+ "learning_rate": 3e-05,
1555
+ "loss": 0.6157,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.6032608695652174,
1560
+ "grad_norm": 2.102964162826538,
1561
+ "learning_rate": 3e-05,
1562
+ "loss": 0.4715,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.6059782608695652,
1567
+ "grad_norm": 1.6074268817901611,
1568
+ "learning_rate": 3e-05,
1569
+ "loss": 0.48,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.6086956521739131,
1574
+ "grad_norm": 1.9385191202163696,
1575
+ "learning_rate": 3e-05,
1576
+ "loss": 0.4727,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.6114130434782609,
1581
+ "grad_norm": 2.639068603515625,
1582
+ "learning_rate": 3e-05,
1583
+ "loss": 0.6696,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.6141304347826086,
1588
+ "grad_norm": 1.9903889894485474,
1589
+ "learning_rate": 3e-05,
1590
+ "loss": 0.5696,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.6168478260869565,
1595
+ "grad_norm": 2.7789058685302734,
1596
+ "learning_rate": 3e-05,
1597
+ "loss": 0.6264,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.6195652173913043,
1602
+ "grad_norm": 2.7294304370880127,
1603
+ "learning_rate": 3e-05,
1604
+ "loss": 0.5185,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.6222826086956522,
1609
+ "grad_norm": 2.1425840854644775,
1610
+ "learning_rate": 3e-05,
1611
+ "loss": 0.4822,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.625,
1616
+ "grad_norm": 2.22175669670105,
1617
+ "learning_rate": 3e-05,
1618
+ "loss": 0.6414,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.6277173913043478,
1623
+ "grad_norm": 2.031067132949829,
1624
+ "learning_rate": 3e-05,
1625
+ "loss": 0.4099,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.6304347826086957,
1630
+ "grad_norm": 2.0958268642425537,
1631
+ "learning_rate": 3e-05,
1632
+ "loss": 0.7023,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.6331521739130435,
1637
+ "grad_norm": 2.353266716003418,
1638
+ "learning_rate": 3e-05,
1639
+ "loss": 0.5861,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.6358695652173914,
1644
+ "grad_norm": 2.579880475997925,
1645
+ "learning_rate": 3e-05,
1646
+ "loss": 0.6487,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.6385869565217391,
1651
+ "grad_norm": 2.1880500316619873,
1652
+ "learning_rate": 3e-05,
1653
+ "loss": 0.6574,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.6413043478260869,
1658
+ "grad_norm": 1.692370891571045,
1659
+ "learning_rate": 3e-05,
1660
+ "loss": 0.443,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.6440217391304348,
1665
+ "grad_norm": 1.253108263015747,
1666
+ "learning_rate": 3e-05,
1667
+ "loss": 0.3879,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.6467391304347826,
1672
+ "grad_norm": 2.0025603771209717,
1673
+ "learning_rate": 3e-05,
1674
+ "loss": 0.5068,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.6494565217391305,
1679
+ "grad_norm": 2.018907070159912,
1680
+ "learning_rate": 3e-05,
1681
+ "loss": 0.5783,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.6521739130434783,
1686
+ "grad_norm": 1.8426876068115234,
1687
+ "learning_rate": 3e-05,
1688
+ "loss": 0.5025,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.654891304347826,
1693
+ "grad_norm": 1.7005494832992554,
1694
+ "learning_rate": 3e-05,
1695
+ "loss": 0.4745,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.657608695652174,
1700
+ "grad_norm": 1.503015398979187,
1701
+ "learning_rate": 3e-05,
1702
+ "loss": 0.5462,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.6603260869565217,
1707
+ "grad_norm": 1.5778555870056152,
1708
+ "learning_rate": 3e-05,
1709
+ "loss": 0.4247,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.6630434782608695,
1714
+ "grad_norm": 2.054659843444824,
1715
+ "learning_rate": 3e-05,
1716
+ "loss": 0.5232,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.6657608695652174,
1721
+ "grad_norm": 1.7915781736373901,
1722
+ "learning_rate": 3e-05,
1723
+ "loss": 0.501,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.6684782608695652,
1728
+ "grad_norm": 2.16675066947937,
1729
+ "learning_rate": 3e-05,
1730
+ "loss": 0.6102,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.6711956521739131,
1735
+ "grad_norm": 2.503446578979492,
1736
+ "learning_rate": 3e-05,
1737
+ "loss": 0.5873,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.6739130434782609,
1742
+ "grad_norm": 1.6269731521606445,
1743
+ "learning_rate": 3e-05,
1744
+ "loss": 0.4125,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.6766304347826086,
1749
+ "grad_norm": 1.795397162437439,
1750
+ "learning_rate": 3e-05,
1751
+ "loss": 0.5117,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.6793478260869565,
1756
+ "grad_norm": 2.1140689849853516,
1757
+ "learning_rate": 3e-05,
1758
+ "loss": 0.494,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.6820652173913043,
1763
+ "grad_norm": 1.8272490501403809,
1764
+ "learning_rate": 3e-05,
1765
+ "loss": 0.506,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.6847826086956522,
1770
+ "grad_norm": 1.8032358884811401,
1771
+ "learning_rate": 3e-05,
1772
+ "loss": 0.5329,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.6875,
1777
+ "grad_norm": 2.1028482913970947,
1778
+ "learning_rate": 3e-05,
1779
+ "loss": 0.5306,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.6902173913043478,
1784
+ "grad_norm": 3.13128399848938,
1785
+ "learning_rate": 3e-05,
1786
+ "loss": 0.6008,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.6929347826086957,
1791
+ "grad_norm": 1.6769640445709229,
1792
+ "learning_rate": 3e-05,
1793
+ "loss": 0.5309,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.6956521739130435,
1798
+ "grad_norm": 1.5554113388061523,
1799
+ "learning_rate": 3e-05,
1800
+ "loss": 0.5298,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.6983695652173914,
1805
+ "grad_norm": 1.408714771270752,
1806
+ "learning_rate": 3e-05,
1807
+ "loss": 0.4415,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.7010869565217391,
1812
+ "grad_norm": 1.4659717082977295,
1813
+ "learning_rate": 3e-05,
1814
+ "loss": 0.3927,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.7038043478260869,
1819
+ "grad_norm": 1.5185580253601074,
1820
+ "learning_rate": 3e-05,
1821
+ "loss": 0.5113,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.7065217391304348,
1826
+ "grad_norm": 1.2095264196395874,
1827
+ "learning_rate": 3e-05,
1828
+ "loss": 0.4989,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.7092391304347826,
1833
+ "grad_norm": 1.7118961811065674,
1834
+ "learning_rate": 3e-05,
1835
+ "loss": 0.5711,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.7119565217391305,
1840
+ "grad_norm": 1.268684983253479,
1841
+ "learning_rate": 3e-05,
1842
+ "loss": 0.4141,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.7146739130434783,
1847
+ "grad_norm": 1.5639039278030396,
1848
+ "learning_rate": 3e-05,
1849
+ "loss": 0.3954,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.717391304347826,
1854
+ "grad_norm": 1.5051435232162476,
1855
+ "learning_rate": 3e-05,
1856
+ "loss": 0.5565,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.720108695652174,
1861
+ "grad_norm": 2.289475679397583,
1862
+ "learning_rate": 3e-05,
1863
+ "loss": 0.6248,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.7228260869565217,
1868
+ "grad_norm": 2.8152410984039307,
1869
+ "learning_rate": 3e-05,
1870
+ "loss": 0.5782,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.7255434782608695,
1875
+ "grad_norm": 1.3830969333648682,
1876
+ "learning_rate": 3e-05,
1877
+ "loss": 0.3414,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.7282608695652174,
1882
+ "grad_norm": 1.6137558221817017,
1883
+ "learning_rate": 3e-05,
1884
+ "loss": 0.5093,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.7309782608695652,
1889
+ "grad_norm": 2.456444025039673,
1890
+ "learning_rate": 3e-05,
1891
+ "loss": 0.5382,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.7336956521739131,
1896
+ "grad_norm": 2.212475061416626,
1897
+ "learning_rate": 3e-05,
1898
+ "loss": 0.4898,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.7364130434782609,
1903
+ "grad_norm": 2.4707953929901123,
1904
+ "learning_rate": 3e-05,
1905
+ "loss": 0.7499,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.7391304347826086,
1910
+ "grad_norm": 1.7205860614776611,
1911
+ "learning_rate": 3e-05,
1912
+ "loss": 0.4294,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.7418478260869565,
1917
+ "grad_norm": 2.055875062942505,
1918
+ "learning_rate": 3e-05,
1919
+ "loss": 0.6336,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.7445652173913043,
1924
+ "grad_norm": 2.388607978820801,
1925
+ "learning_rate": 3e-05,
1926
+ "loss": 0.5929,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.7472826086956522,
1931
+ "grad_norm": 2.509526491165161,
1932
+ "learning_rate": 3e-05,
1933
+ "loss": 0.6704,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.75,
1938
+ "grad_norm": 1.3426049947738647,
1939
+ "learning_rate": 3e-05,
1940
+ "loss": 0.4698,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.7527173913043478,
1945
+ "grad_norm": 1.8016018867492676,
1946
+ "learning_rate": 3e-05,
1947
+ "loss": 0.5052,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.7554347826086957,
1952
+ "grad_norm": 1.7007917165756226,
1953
+ "learning_rate": 3e-05,
1954
+ "loss": 0.5279,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.7581521739130435,
1959
+ "grad_norm": 2.104093074798584,
1960
+ "learning_rate": 3e-05,
1961
+ "loss": 0.5401,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.7608695652173914,
1966
+ "grad_norm": 2.2383487224578857,
1967
+ "learning_rate": 3e-05,
1968
+ "loss": 0.5503,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.7635869565217391,
1973
+ "grad_norm": 1.8349882364273071,
1974
+ "learning_rate": 3e-05,
1975
+ "loss": 0.539,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.7663043478260869,
1980
+ "grad_norm": 1.6838781833648682,
1981
+ "learning_rate": 3e-05,
1982
+ "loss": 0.4281,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.7690217391304348,
1987
+ "grad_norm": 2.3261828422546387,
1988
+ "learning_rate": 3e-05,
1989
+ "loss": 0.507,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.7717391304347826,
1994
+ "grad_norm": 1.6605132818222046,
1995
+ "learning_rate": 3e-05,
1996
+ "loss": 0.6602,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.7744565217391305,
2001
+ "grad_norm": 2.164030075073242,
2002
+ "learning_rate": 3e-05,
2003
+ "loss": 0.4894,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.7771739130434783,
2008
+ "grad_norm": 1.8546051979064941,
2009
+ "learning_rate": 3e-05,
2010
+ "loss": 0.44,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.779891304347826,
2015
+ "grad_norm": 2.498770236968994,
2016
+ "learning_rate": 3e-05,
2017
+ "loss": 0.627,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.782608695652174,
2022
+ "grad_norm": 2.179408550262451,
2023
+ "learning_rate": 3e-05,
2024
+ "loss": 0.6078,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.7853260869565217,
2029
+ "grad_norm": 1.6444724798202515,
2030
+ "learning_rate": 3e-05,
2031
+ "loss": 0.56,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.7880434782608695,
2036
+ "grad_norm": 1.3116724491119385,
2037
+ "learning_rate": 3e-05,
2038
+ "loss": 0.4838,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.7907608695652174,
2043
+ "grad_norm": 2.142730951309204,
2044
+ "learning_rate": 3e-05,
2045
+ "loss": 0.5892,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.7934782608695652,
2050
+ "grad_norm": 1.947159767150879,
2051
+ "learning_rate": 3e-05,
2052
+ "loss": 0.4796,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.7961956521739131,
2057
+ "grad_norm": 1.7489418983459473,
2058
+ "learning_rate": 3e-05,
2059
+ "loss": 0.6132,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.7989130434782609,
2064
+ "grad_norm": 1.7919461727142334,
2065
+ "learning_rate": 3e-05,
2066
+ "loss": 0.4928,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.8016304347826086,
2071
+ "grad_norm": 2.547961711883545,
2072
+ "learning_rate": 3e-05,
2073
+ "loss": 0.491,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.8043478260869565,
2078
+ "grad_norm": 2.5002658367156982,
2079
+ "learning_rate": 3e-05,
2080
+ "loss": 0.6737,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.8070652173913043,
2085
+ "grad_norm": 1.5400561094284058,
2086
+ "learning_rate": 3e-05,
2087
+ "loss": 0.4632,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.8097826086956522,
2092
+ "grad_norm": 1.2512913942337036,
2093
+ "learning_rate": 3e-05,
2094
+ "loss": 0.563,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.8125,
2099
+ "grad_norm": 1.7560540437698364,
2100
+ "learning_rate": 3e-05,
2101
+ "loss": 0.5273,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.8152173913043478,
2106
+ "grad_norm": 2.1025469303131104,
2107
+ "learning_rate": 3e-05,
2108
+ "loss": 0.5813,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.8179347826086957,
2113
+ "grad_norm": 1.748838186264038,
2114
+ "learning_rate": 3e-05,
2115
+ "loss": 0.5182,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.8206521739130435,
2120
+ "grad_norm": 1.7875301837921143,
2121
+ "learning_rate": 3e-05,
2122
+ "loss": 0.5248,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.8233695652173914,
2127
+ "grad_norm": 1.6547335386276245,
2128
+ "learning_rate": 3e-05,
2129
+ "loss": 0.4525,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.8260869565217391,
2134
+ "grad_norm": 2.5749781131744385,
2135
+ "learning_rate": 3e-05,
2136
+ "loss": 0.5864,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.8288043478260869,
2141
+ "grad_norm": 2.010406255722046,
2142
+ "learning_rate": 3e-05,
2143
+ "loss": 0.4704,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.8315217391304348,
2148
+ "grad_norm": 1.61479914188385,
2149
+ "learning_rate": 3e-05,
2150
+ "loss": 0.4981,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.8342391304347826,
2155
+ "grad_norm": 2.3102943897247314,
2156
+ "learning_rate": 3e-05,
2157
+ "loss": 0.4854,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.8369565217391305,
2162
+ "grad_norm": 4.297898769378662,
2163
+ "learning_rate": 3e-05,
2164
+ "loss": 0.6969,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.8396739130434783,
2169
+ "grad_norm": 1.56645667552948,
2170
+ "learning_rate": 3e-05,
2171
+ "loss": 0.4675,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.842391304347826,
2176
+ "grad_norm": 2.9031646251678467,
2177
+ "learning_rate": 3e-05,
2178
+ "loss": 0.713,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.845108695652174,
2183
+ "grad_norm": 1.9214662313461304,
2184
+ "learning_rate": 3e-05,
2185
+ "loss": 0.5379,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.8478260869565217,
2190
+ "grad_norm": 2.371910810470581,
2191
+ "learning_rate": 3e-05,
2192
+ "loss": 0.5174,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.8505434782608695,
2197
+ "grad_norm": 2.3552019596099854,
2198
+ "learning_rate": 3e-05,
2199
+ "loss": 0.4784,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.8532608695652174,
2204
+ "grad_norm": 1.3287854194641113,
2205
+ "learning_rate": 3e-05,
2206
+ "loss": 0.5026,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.8559782608695652,
2211
+ "grad_norm": 3.1460154056549072,
2212
+ "learning_rate": 3e-05,
2213
+ "loss": 0.6437,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.8586956521739131,
2218
+ "grad_norm": 3.9493658542633057,
2219
+ "learning_rate": 3e-05,
2220
+ "loss": 0.7079,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.8614130434782609,
2225
+ "grad_norm": 1.8890721797943115,
2226
+ "learning_rate": 3e-05,
2227
+ "loss": 0.4789,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.8641304347826086,
2232
+ "grad_norm": 2.397585153579712,
2233
+ "learning_rate": 3e-05,
2234
+ "loss": 0.5358,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.8668478260869565,
2239
+ "grad_norm": 3.6481263637542725,
2240
+ "learning_rate": 3e-05,
2241
+ "loss": 0.6699,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.8695652173913043,
2246
+ "grad_norm": 3.643709421157837,
2247
+ "learning_rate": 3e-05,
2248
+ "loss": 0.5464,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.8722826086956522,
2253
+ "grad_norm": 1.8755005598068237,
2254
+ "learning_rate": 3e-05,
2255
+ "loss": 0.5231,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.875,
2260
+ "grad_norm": 1.2588874101638794,
2261
+ "learning_rate": 3e-05,
2262
+ "loss": 0.3987,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.8777173913043478,
2267
+ "grad_norm": 1.8710525035858154,
2268
+ "learning_rate": 3e-05,
2269
+ "loss": 0.5137,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.8804347826086957,
2274
+ "grad_norm": 1.8760285377502441,
2275
+ "learning_rate": 3e-05,
2276
+ "loss": 0.5162,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.8831521739130435,
2281
+ "grad_norm": 2.302496910095215,
2282
+ "learning_rate": 3e-05,
2283
+ "loss": 0.6338,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.8858695652173914,
2288
+ "grad_norm": 2.173513650894165,
2289
+ "learning_rate": 3e-05,
2290
+ "loss": 0.5525,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 0.8885869565217391,
2295
+ "grad_norm": 3.2215616703033447,
2296
+ "learning_rate": 3e-05,
2297
+ "loss": 0.4746,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 0.8913043478260869,
2302
+ "grad_norm": 1.402948021888733,
2303
+ "learning_rate": 3e-05,
2304
+ "loss": 0.4551,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 0.8940217391304348,
2309
+ "grad_norm": 2.177567958831787,
2310
+ "learning_rate": 3e-05,
2311
+ "loss": 0.5937,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 0.8967391304347826,
2316
+ "grad_norm": 1.9073940515518188,
2317
+ "learning_rate": 3e-05,
2318
+ "loss": 0.6849,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 0.8994565217391305,
2323
+ "grad_norm": 2.078620195388794,
2324
+ "learning_rate": 3e-05,
2325
+ "loss": 0.4851,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 0.9021739130434783,
2330
+ "grad_norm": 1.666050672531128,
2331
+ "learning_rate": 3e-05,
2332
+ "loss": 0.5361,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 0.904891304347826,
2337
+ "grad_norm": 1.8900854587554932,
2338
+ "learning_rate": 3e-05,
2339
+ "loss": 0.5878,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 0.907608695652174,
2344
+ "grad_norm": 2.4157278537750244,
2345
+ "learning_rate": 3e-05,
2346
+ "loss": 0.583,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 0.9103260869565217,
2351
+ "grad_norm": 1.9325672388076782,
2352
+ "learning_rate": 3e-05,
2353
+ "loss": 0.5036,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 0.9130434782608695,
2358
+ "grad_norm": 2.91580867767334,
2359
+ "learning_rate": 3e-05,
2360
+ "loss": 0.6958,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 0.9157608695652174,
2365
+ "grad_norm": 2.5430386066436768,
2366
+ "learning_rate": 3e-05,
2367
+ "loss": 0.5496,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 0.9184782608695652,
2372
+ "grad_norm": 2.0265727043151855,
2373
+ "learning_rate": 3e-05,
2374
+ "loss": 0.4997,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 0.9211956521739131,
2379
+ "grad_norm": 1.583471417427063,
2380
+ "learning_rate": 3e-05,
2381
+ "loss": 0.4641,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 0.9239130434782609,
2386
+ "grad_norm": 2.3555848598480225,
2387
+ "learning_rate": 3e-05,
2388
+ "loss": 0.4989,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 0.9266304347826086,
2393
+ "grad_norm": 2.229189395904541,
2394
+ "learning_rate": 3e-05,
2395
+ "loss": 0.5665,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 0.9293478260869565,
2400
+ "grad_norm": 1.3699840307235718,
2401
+ "learning_rate": 3e-05,
2402
+ "loss": 0.523,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 0.9320652173913043,
2407
+ "grad_norm": 1.9070311784744263,
2408
+ "learning_rate": 3e-05,
2409
+ "loss": 0.565,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 0.9347826086956522,
2414
+ "grad_norm": 2.588691234588623,
2415
+ "learning_rate": 3e-05,
2416
+ "loss": 0.5814,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 0.9375,
2421
+ "grad_norm": 1.7156322002410889,
2422
+ "learning_rate": 3e-05,
2423
+ "loss": 0.5074,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 0.9402173913043478,
2428
+ "grad_norm": 2.289538860321045,
2429
+ "learning_rate": 3e-05,
2430
+ "loss": 0.5744,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 0.9429347826086957,
2435
+ "grad_norm": 1.0715011358261108,
2436
+ "learning_rate": 3e-05,
2437
+ "loss": 0.4612,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 0.9456521739130435,
2442
+ "grad_norm": 1.5660399198532104,
2443
+ "learning_rate": 3e-05,
2444
+ "loss": 0.4354,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 0.9483695652173914,
2449
+ "grad_norm": 2.2513458728790283,
2450
+ "learning_rate": 3e-05,
2451
+ "loss": 0.5702,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 0.9510869565217391,
2456
+ "grad_norm": 2.5733985900878906,
2457
+ "learning_rate": 3e-05,
2458
+ "loss": 0.6115,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 0.9538043478260869,
2463
+ "grad_norm": 1.1676104068756104,
2464
+ "learning_rate": 3e-05,
2465
+ "loss": 0.4158,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 0.9565217391304348,
2470
+ "grad_norm": 2.1852831840515137,
2471
+ "learning_rate": 3e-05,
2472
+ "loss": 0.5267,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 0.9592391304347826,
2477
+ "grad_norm": 1.339505910873413,
2478
+ "learning_rate": 3e-05,
2479
+ "loss": 0.4204,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 0.9619565217391305,
2484
+ "grad_norm": 1.5837697982788086,
2485
+ "learning_rate": 3e-05,
2486
+ "loss": 0.4722,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 0.9646739130434783,
2491
+ "grad_norm": 1.5127207040786743,
2492
+ "learning_rate": 3e-05,
2493
+ "loss": 0.4782,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 0.967391304347826,
2498
+ "grad_norm": 0.9464153051376343,
2499
+ "learning_rate": 3e-05,
2500
+ "loss": 0.3675,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 0.970108695652174,
2505
+ "grad_norm": 3.507087469100952,
2506
+ "learning_rate": 3e-05,
2507
+ "loss": 0.5947,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 0.9728260869565217,
2512
+ "grad_norm": 2.1700286865234375,
2513
+ "learning_rate": 3e-05,
2514
+ "loss": 0.5949,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 0.9755434782608695,
2519
+ "grad_norm": 1.070860505104065,
2520
+ "learning_rate": 3e-05,
2521
+ "loss": 0.4209,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 0.9782608695652174,
2526
+ "grad_norm": 1.8626935482025146,
2527
+ "learning_rate": 3e-05,
2528
+ "loss": 0.4979,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 0.9809782608695652,
2533
+ "grad_norm": 1.2900367975234985,
2534
+ "learning_rate": 3e-05,
2535
+ "loss": 0.4778,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 0.9836956521739131,
2540
+ "grad_norm": 1.2917206287384033,
2541
+ "learning_rate": 3e-05,
2542
+ "loss": 0.4561,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 0.9864130434782609,
2547
+ "grad_norm": 2.3133273124694824,
2548
+ "learning_rate": 3e-05,
2549
+ "loss": 0.5618,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 0.9891304347826086,
2554
+ "grad_norm": 1.5823960304260254,
2555
+ "learning_rate": 3e-05,
2556
+ "loss": 0.5549,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 0.9918478260869565,
2561
+ "grad_norm": 1.6155842542648315,
2562
+ "learning_rate": 3e-05,
2563
+ "loss": 0.4442,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 0.9945652173913043,
2568
+ "grad_norm": 1.7502015829086304,
2569
+ "learning_rate": 3e-05,
2570
+ "loss": 0.5179,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 0.9972826086956522,
2575
+ "grad_norm": 2.5052552223205566,
2576
+ "learning_rate": 3e-05,
2577
+ "loss": 0.5613,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 1.0,
2582
+ "grad_norm": 0.9979060888290405,
2583
+ "learning_rate": 3e-05,
2584
+ "loss": 0.3232,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 1.0,
2589
+ "step": 368,
2590
+ "total_flos": 6.339170402304e+16,
2591
+ "train_loss": 0.5430356652840324,
2592
+ "train_runtime": 908.8402,
2593
+ "train_samples_per_second": 3.234,
2594
+ "train_steps_per_second": 0.405
2595
+ }
2596
+ ],
2597
+ "logging_steps": 1.0,
2598
+ "max_steps": 368,
2599
+ "num_input_tokens_seen": 0,
2600
+ "num_train_epochs": 1,
2601
+ "save_steps": 200,
2602
+ "stateful_callbacks": {
2603
+ "TrainerControl": {
2604
+ "args": {
2605
+ "should_epoch_stop": false,
2606
+ "should_evaluate": false,
2607
+ "should_log": false,
2608
+ "should_save": true,
2609
+ "should_training_stop": true
2610
+ },
2611
+ "attributes": {}
2612
+ }
2613
+ },
2614
+ "total_flos": 6.339170402304e+16,
2615
+ "train_batch_size": 1,
2616
+ "trial_name": null,
2617
+ "trial_params": null
2618
+ }
vocoder_config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "input_wavs_dir": "/private/home/adampolyak/datasets/LJ/LJSpeech-1.1/wavs_16khz_padded",
3
+ "input_training_file": "/large_experiments/ust/annl/datasets/tts/LJSpeech/filelist/mhubert_vp_en_es_fr_it3_400k/lj_train_layer11_hubert1000_filelist.txt",
4
+ "input_validation_file": "/large_experiments/ust/annl/datasets/tts/LJSpeech/filelist/mhubert_vp_en_es_fr_it3_400k/lj_dev_layer11_hubert1000_filelist.txt",
5
+
6
+ "resblock": "1",
7
+ "num_gpus": 0,
8
+ "batch_size": 16,
9
+ "learning_rate": 0.0002,
10
+ "adam_b1": 0.8,
11
+ "adam_b2": 0.99,
12
+ "lr_decay": 0.999,
13
+ "seed": 1234,
14
+
15
+ "upsample_rates": [5,4,4,2,2],
16
+ "upsample_kernel_sizes": [11,8,8,4,4],
17
+ "upsample_initial_channel": 512,
18
+ "resblock_kernel_sizes": [3,7,11],
19
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
20
+ "num_embeddings": 1000,
21
+ "embedding_dim": 128,
22
+ "model_in_dim": 128,
23
+
24
+ "segment_size": 8960,
25
+ "code_hop_size": 320,
26
+ "f0": false,
27
+ "num_mels": 80,
28
+ "num_freq": 1025,
29
+ "n_fft": 1024,
30
+ "hop_size": 256,
31
+ "win_size": 1024,
32
+
33
+ "dur_prediction_weight": 1.0,
34
+ "dur_predictor_params": {
35
+ "encoder_embed_dim": 128,
36
+ "var_pred_hidden_dim": 128,
37
+ "var_pred_kernel_size": 3,
38
+ "var_pred_dropout": 0.5
39
+ },
40
+
41
+ "sampling_rate": 16000,
42
+
43
+ "fmin": 0,
44
+ "fmax": 8000,
45
+ "fmax_for_loss": null,
46
+
47
+ "num_workers": 4,
48
+
49
+ "dist_config": {
50
+ "dist_backend": "nccl",
51
+ "dist_url": "env://"
52
+ }
53
+ }