program(1.0) [buildInfo = dict, tensor>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.8.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})] { func main(tensor embeddings) [FlexibleShapeInformation = tuple, dict, tensor>>, tuple, dict, dict, tensor>>>>((("DefaultShapes", {{"embeddings", [32, 256]}}), ("EnumeratedShapes", {{"embeddings_1_1_1_10_256_", {{"embeddings", [10, 256]}}}, {"embeddings_1_1_1_11_256_", {{"embeddings", [11, 256]}}}, {"embeddings_1_1_1_12_256_", {{"embeddings", [12, 256]}}}, {"embeddings_1_1_1_13_256_", {{"embeddings", [13, 256]}}}, {"embeddings_1_1_1_14_256_", {{"embeddings", [14, 256]}}}, {"embeddings_1_1_1_15_256_", {{"embeddings", [15, 256]}}}, {"embeddings_1_1_1_16_256_", {{"embeddings", [16, 256]}}}, {"embeddings_1_1_1_17_256_", {{"embeddings", [17, 256]}}}, {"embeddings_1_1_1_18_256_", {{"embeddings", [18, 256]}}}, {"embeddings_1_1_1_19_256_", {{"embeddings", [19, 256]}}}, {"embeddings_1_1_1_1_256_", {{"embeddings", [1, 256]}}}, {"embeddings_1_1_1_20_256_", {{"embeddings", [20, 256]}}}, {"embeddings_1_1_1_21_256_", {{"embeddings", [21, 256]}}}, {"embeddings_1_1_1_22_256_", {{"embeddings", [22, 256]}}}, {"embeddings_1_1_1_23_256_", {{"embeddings", [23, 256]}}}, {"embeddings_1_1_1_24_256_", {{"embeddings", [24, 256]}}}, {"embeddings_1_1_1_25_256_", {{"embeddings", [25, 256]}}}, {"embeddings_1_1_1_26_256_", {{"embeddings", [26, 256]}}}, {"embeddings_1_1_1_27_256_", {{"embeddings", [27, 256]}}}, {"embeddings_1_1_1_28_256_", {{"embeddings", [28, 256]}}}, {"embeddings_1_1_1_29_256_", {{"embeddings", [29, 256]}}}, {"embeddings_1_1_1_2_256_", {{"embeddings", [2, 256]}}}, {"embeddings_1_1_1_30_256_", {{"embeddings", [30, 256]}}}, {"embeddings_1_1_1_31_256_", {{"embeddings", [31, 256]}}}, {"embeddings_1_1_1_32_256_", {{"embeddings", [32, 256]}}}, {"embeddings_1_1_1_3_256_", {{"embeddings", [3, 256]}}}, {"embeddings_1_1_1_4_256_", {{"embeddings", [4, 256]}}}, {"embeddings_1_1_1_5_256_", {{"embeddings", [5, 256]}}}, {"embeddings_1_1_1_6_256_", {{"embeddings", [6, 256]}}}, {"embeddings_1_1_1_7_256_", {{"embeddings", [7, 256]}}}, {"embeddings_1_1_1_8_256_", {{"embeddings", [8, 256]}}}, {"embeddings_1_1_1_9_256_", {{"embeddings", [9, 256]}}}})))] { tensor sqrt_phi = const()[name = tensor("sqrt_phi"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; tensor transform_plda_tr = const()[name = tensor("transform_plda_tr"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(640)))]; tensor transform_mu = const()[name = tensor("transform_mu"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(66240)))]; tensor transform_lda_dim_scale = const()[name = tensor("transform_lda_dim_scale"), val = tensor(0x1.6a09e6p+3)]; tensor transform_mean2 = const()[name = tensor("transform_mean2"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(66816)))]; tensor transform_lda_scale = const()[name = tensor("transform_lda_scale"), val = tensor(0x1p+4)]; tensor transform_mean1 = const()[name = tensor("transform_mean1"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(67392)))]; tensor var_4 = const()[name = tensor("op_4"), val = tensor(0x1.197998p-40)]; tensor x_1 = sub(x = embeddings, y = transform_mean1)[name = tensor("x_1")]; tensor var_17 = mul(x = x_1, y = x_1)[name = tensor("op_17")]; tensor var_19_axes_0 = const()[name = tensor("op_19_axes_0"), val = tensor([-1])]; tensor var_19_keep_dims_0 = const()[name = tensor("op_19_keep_dims_0"), val = tensor(true)]; tensor var_19 = reduce_sum(axes = var_19_axes_0, keep_dims = var_19_keep_dims_0, x = var_17)[name = tensor("op_19")]; tensor const_0 = const()[name = tensor("const_0"), val = tensor(0x1.fffffep+127)]; tensor clip_0 = clip(alpha = var_4, beta = const_0, x = var_19)[name = tensor("clip_0")]; tensor norm_1 = sqrt(x = clip_0)[name = tensor("norm_1")]; tensor normalized1 = real_div(x = x_1, y = norm_1)[name = tensor("normalized1")]; tensor transpose_0 = const()[name = tensor("transpose_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68480)))]; tensor var_23_bias_0 = const()[name = tensor("op_23_bias_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(199616)))]; tensor var_23 = linear(bias = var_23_bias_0, weight = transpose_0, x = normalized1)[name = tensor("op_23")]; tensor projected = mul(x = var_23, y = transform_lda_scale)[name = tensor("projected")]; tensor x = sub(x = projected, y = transform_mean2)[name = tensor("x")]; tensor var_26 = mul(x = x, y = x)[name = tensor("op_26")]; tensor var_28_axes_0 = const()[name = tensor("op_28_axes_0"), val = tensor([-1])]; tensor var_28_keep_dims_0 = const()[name = tensor("op_28_keep_dims_0"), val = tensor(true)]; tensor var_28 = reduce_sum(axes = var_28_axes_0, keep_dims = var_28_keep_dims_0, x = var_26)[name = tensor("op_28")]; tensor const_1 = const()[name = tensor("const_1"), val = tensor(0x1.fffffep+127)]; tensor clip_1 = clip(alpha = var_4, beta = const_1, x = var_28)[name = tensor("clip_1")]; tensor norm = sqrt(x = clip_1)[name = tensor("norm")]; tensor var_31 = real_div(x = x, y = norm)[name = tensor("op_31")]; tensor normalized2 = mul(x = var_31, y = transform_lda_dim_scale)[name = tensor("normalized2")]; tensor plda_centered = sub(x = normalized2, y = transform_mu)[name = tensor("plda_centered")]; tensor features = linear(bias = var_23_bias_0, weight = transform_plda_tr, x = plda_centered)[name = tensor("features")]; tensor rho = mul(x = features, y = sqrt_phi)[name = tensor("op_36")]; } -> (rho); }