program(1.0) [buildInfo = dict, tensor>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.8.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})] { func main(tensor audio) [FlexibleShapeInformation = tuple, dict, tensor>>, tuple, dict, dict, tensor>>>>((("DefaultShapes", {{"audio", [1, 1, 160000]}}), ("EnumeratedShapes", {{"audio_1_1_10_1_160000_", {{"audio", [10, 1, 160000]}}}, {"audio_1_1_11_1_160000_", {{"audio", [11, 1, 160000]}}}, {"audio_1_1_12_1_160000_", {{"audio", [12, 1, 160000]}}}, {"audio_1_1_13_1_160000_", {{"audio", [13, 1, 160000]}}}, {"audio_1_1_14_1_160000_", {{"audio", [14, 1, 160000]}}}, {"audio_1_1_15_1_160000_", {{"audio", [15, 1, 160000]}}}, {"audio_1_1_16_1_160000_", {{"audio", [16, 1, 160000]}}}, {"audio_1_1_17_1_160000_", {{"audio", [17, 1, 160000]}}}, {"audio_1_1_18_1_160000_", {{"audio", [18, 1, 160000]}}}, {"audio_1_1_19_1_160000_", {{"audio", [19, 1, 160000]}}}, {"audio_1_1_1_1_160000_", {{"audio", [1, 1, 160000]}}}, {"audio_1_1_20_1_160000_", {{"audio", [20, 1, 160000]}}}, {"audio_1_1_21_1_160000_", {{"audio", [21, 1, 160000]}}}, {"audio_1_1_22_1_160000_", {{"audio", [22, 1, 160000]}}}, {"audio_1_1_23_1_160000_", {{"audio", [23, 1, 160000]}}}, {"audio_1_1_24_1_160000_", {{"audio", [24, 1, 160000]}}}, {"audio_1_1_25_1_160000_", {{"audio", [25, 1, 160000]}}}, {"audio_1_1_26_1_160000_", {{"audio", [26, 1, 160000]}}}, {"audio_1_1_27_1_160000_", {{"audio", [27, 1, 160000]}}}, {"audio_1_1_28_1_160000_", {{"audio", [28, 1, 160000]}}}, {"audio_1_1_29_1_160000_", {{"audio", [29, 1, 160000]}}}, {"audio_1_1_2_1_160000_", {{"audio", [2, 1, 160000]}}}, {"audio_1_1_30_1_160000_", {{"audio", [30, 1, 160000]}}}, {"audio_1_1_31_1_160000_", {{"audio", [31, 1, 160000]}}}, {"audio_1_1_32_1_160000_", {{"audio", [32, 1, 160000]}}}, {"audio_1_1_3_1_160000_", {{"audio", [3, 1, 160000]}}}, {"audio_1_1_4_1_160000_", {{"audio", [4, 1, 160000]}}}, {"audio_1_1_5_1_160000_", {{"audio", [5, 1, 160000]}}}, {"audio_1_1_6_1_160000_", {{"audio", [6, 1, 160000]}}}, {"audio_1_1_7_1_160000_", {{"audio", [7, 1, 160000]}}}, {"audio_1_1_8_1_160000_", {{"audio", [8, 1, 160000]}}}, {"audio_1_1_9_1_160000_", {{"audio", [9, 1, 160000]}}}})))] { tensor _fbank_mel_weight = const()[name = tensor("_fbank_mel_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; tensor _fbank_dft_imag_weight = const()[name = tensor("_fbank_dft_imag_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(82368)))]; tensor _fbank_dft_real_weight = const()[name = tensor("_fbank_dft_real_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(608768)))]; tensor _fbank_window = const()[name = tensor("_fbank_window"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1135168)))]; tensor _fbank_eps = const()[name = tensor("_fbank_eps"), val = tensor(0x1.0c6f7ap-20)]; tensor _fbank_frame_kernel = const()[name = tensor("_fbank_frame_kernel"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1136832)))]; tensor var_3_promoted = const()[name = tensor("op_3_promoted"), val = tensor(0x1p+15)]; tensor waveforms_3 = mul(x = audio, y = var_3_promoted)[name = tensor("waveforms_3")]; tensor frames_1_pad_type_0 = const()[name = tensor("frames_1_pad_type_0"), val = tensor("valid")]; tensor frames_1_strides_0 = const()[name = tensor("frames_1_strides_0"), val = tensor([160])]; tensor frames_1_pad_0 = const()[name = tensor("frames_1_pad_0"), val = tensor([0, 0])]; tensor frames_1_dilations_0 = const()[name = tensor("frames_1_dilations_0"), val = tensor([1])]; tensor frames_1_groups_0 = const()[name = tensor("frames_1_groups_0"), val = tensor(1)]; tensor frames_1 = conv(dilations = frames_1_dilations_0, groups = frames_1_groups_0, pad = frames_1_pad_0, pad_type = frames_1_pad_type_0, strides = frames_1_strides_0, weight = _fbank_frame_kernel, x = waveforms_3)[name = tensor("frames_1")]; tensor frames_3_perm_0 = const()[name = tensor("frames_3_perm_0"), val = tensor([0, 2, 1])]; tensor concat_0x = const()[name = tensor("concat_0x"), val = tensor([-1, 400])]; tensor frames_3 = transpose(perm = frames_3_perm_0, x = frames_1)[name = tensor("transpose_1")]; tensor frames_5 = reshape(shape = concat_0x, x = frames_3)[name = tensor("frames_5")]; tensor var_53_axes_0 = const()[name = tensor("op_53_axes_0"), val = tensor([1])]; tensor var_53_keep_dims_0 = const()[name = tensor("op_53_keep_dims_0"), val = tensor(true)]; tensor var_53 = reduce_mean(axes = var_53_axes_0, keep_dims = var_53_keep_dims_0, x = frames_5)[name = tensor("op_53")]; tensor frames_7 = sub(x = frames_5, y = var_53)[name = tensor("frames_7")]; tensor input_1_axes_0 = const()[name = tensor("input_1_axes_0"), val = tensor([1])]; tensor input_1 = expand_dims(axes = input_1_axes_0, x = frames_7)[name = tensor("input_1")]; tensor const_0 = const()[name = tensor("const_0"), val = tensor(0x0p+0)]; tensor var_57_pad_0 = const()[name = tensor("op_57_pad_0"), val = tensor([0, 0, 0, 0, 1, 0])]; tensor var_57_mode_0 = const()[name = tensor("op_57_mode_0"), val = tensor("replicate")]; tensor var_57 = pad(constant_val = const_0, mode = var_57_mode_0, pad = var_57_pad_0, x = input_1)[name = tensor("op_57")]; tensor padded_axes_0 = const()[name = tensor("padded_axes_0"), val = tensor([1])]; tensor padded = squeeze(axes = padded_axes_0, x = var_57)[name = tensor("padded")]; tensor var_60_begin_0 = const()[name = tensor("op_60_begin_0"), val = tensor([0, 0])]; tensor var_60_end_0 = const()[name = tensor("op_60_end_0"), val = tensor([0, 400])]; tensor var_60_end_mask_0 = const()[name = tensor("op_60_end_mask_0"), val = tensor([true, false])]; tensor var_60 = slice_by_index(begin = var_60_begin_0, end = var_60_end_0, end_mask = var_60_end_mask_0, x = padded)[name = tensor("op_60")]; tensor var_61 = const()[name = tensor("op_61"), val = tensor(0x1.f0a3d8p-1)]; tensor var_62 = mul(x = var_60, y = var_61)[name = tensor("op_62")]; tensor frames_9 = sub(x = frames_7, y = var_62)[name = tensor("frames_9")]; tensor frames_11 = mul(x = frames_9, y = _fbank_window)[name = tensor("frames_11")]; tensor input_axes_0 = const()[name = tensor("input_axes_0"), val = tensor([1])]; tensor input = expand_dims(axes = input_axes_0, x = frames_11)[name = tensor("input")]; tensor const_1 = const()[name = tensor("const_1"), val = tensor(0x0p+0)]; tensor var_67_pad_0 = const()[name = tensor("op_67_pad_0"), val = tensor([0, 0, 0, 0, 0, 112])]; tensor var_67_mode_0 = const()[name = tensor("op_67_mode_0"), val = tensor("constant")]; tensor var_67 = pad(constant_val = const_1, mode = var_67_mode_0, pad = var_67_pad_0, x = input)[name = tensor("op_67")]; tensor var_74_pad_type_0 = const()[name = tensor("op_74_pad_type_0"), val = tensor("valid")]; tensor var_74_strides_0 = const()[name = tensor("op_74_strides_0"), val = tensor([1])]; tensor var_74_pad_0 = const()[name = tensor("op_74_pad_0"), val = tensor([0, 0])]; tensor var_74_dilations_0 = const()[name = tensor("op_74_dilations_0"), val = tensor([1])]; tensor var_74_groups_0 = const()[name = tensor("op_74_groups_0"), val = tensor(1)]; tensor var_74 = conv(dilations = var_74_dilations_0, groups = var_74_groups_0, pad = var_74_pad_0, pad_type = var_74_pad_type_0, strides = var_74_strides_0, weight = _fbank_dft_real_weight, x = var_67)[name = tensor("op_74")]; tensor real_axes_0 = const()[name = tensor("real_axes_0"), val = tensor([-1])]; tensor real = squeeze(axes = real_axes_0, x = var_74)[name = tensor("real")]; tensor var_80_pad_type_0 = const()[name = tensor("op_80_pad_type_0"), val = tensor("valid")]; tensor var_80_strides_0 = const()[name = tensor("op_80_strides_0"), val = tensor([1])]; tensor var_80_pad_0 = const()[name = tensor("op_80_pad_0"), val = tensor([0, 0])]; tensor var_80_dilations_0 = const()[name = tensor("op_80_dilations_0"), val = tensor([1])]; tensor var_80_groups_0 = const()[name = tensor("op_80_groups_0"), val = tensor(1)]; tensor var_80 = conv(dilations = var_80_dilations_0, groups = var_80_groups_0, pad = var_80_pad_0, pad_type = var_80_pad_type_0, strides = var_80_strides_0, weight = _fbank_dft_imag_weight, x = var_67)[name = tensor("op_80")]; tensor imag_axes_0 = const()[name = tensor("imag_axes_0"), val = tensor([-1])]; tensor imag = squeeze(axes = imag_axes_0, x = var_80)[name = tensor("imag")]; tensor var_22_promoted = const()[name = tensor("op_22_promoted"), val = tensor(0x1p+1)]; tensor var_82 = pow(x = real, y = var_22_promoted)[name = tensor("op_82")]; tensor var_22_promoted_1 = const()[name = tensor("op_22_promoted_1"), val = tensor(0x1p+1)]; tensor var_83 = pow(x = imag, y = var_22_promoted_1)[name = tensor("op_83")]; tensor power = add(x = var_82, y = var_83)[name = tensor("power")]; tensor var_85_axes_0 = const()[name = tensor("op_85_axes_0"), val = tensor([-1])]; tensor var_85 = expand_dims(axes = var_85_axes_0, x = power)[name = tensor("op_85")]; tensor var_90_pad_type_0 = const()[name = tensor("op_90_pad_type_0"), val = tensor("valid")]; tensor var_90_strides_0 = const()[name = tensor("op_90_strides_0"), val = tensor([1])]; tensor var_90_pad_0 = const()[name = tensor("op_90_pad_0"), val = tensor([0, 0])]; tensor var_90_dilations_0 = const()[name = tensor("op_90_dilations_0"), val = tensor([1])]; tensor var_90_groups_0 = const()[name = tensor("op_90_groups_0"), val = tensor(1)]; tensor var_90 = conv(dilations = var_90_dilations_0, groups = var_90_groups_0, pad = var_90_pad_0, pad_type = var_90_pad_type_0, strides = var_90_strides_0, weight = _fbank_mel_weight, x = var_85)[name = tensor("op_90")]; tensor mel_1_axes_0 = const()[name = tensor("mel_1_axes_0"), val = tensor([-1])]; tensor mel_1 = squeeze(axes = mel_1_axes_0, x = var_90)[name = tensor("mel_1")]; tensor mel_3 = add(x = mel_1, y = _fbank_eps)[name = tensor("mel_3")]; tensor const_2 = const()[name = tensor("const_2"), val = tensor(0x1.fffffep+127)]; tensor clip_0 = clip(alpha = _fbank_eps, beta = const_2, x = mel_3)[name = tensor("clip_0")]; tensor mel_epsilon_0 = const()[name = tensor("mel_epsilon_0"), val = tensor(0x1p-149)]; tensor mel = log(epsilon = mel_epsilon_0, x = clip_0)[name = tensor("mel")]; tensor concat_1x = const()[name = tensor("concat_1x"), val = tensor([-1, 998, 80])]; tensor var_96 = reshape(shape = concat_1x, x = mel)[name = tensor("op_96")]; tensor centered_axes_0 = const()[name = tensor("centered_axes_0"), val = tensor([1])]; tensor centered_keep_dims_0 = const()[name = tensor("centered_keep_dims_0"), val = tensor(true)]; tensor centered = reduce_mean(axes = centered_axes_0, keep_dims = centered_keep_dims_0, x = var_96)[name = tensor("centered")]; tensor features = sub(x = var_96, y = centered)[name = tensor("features")]; tensor var_115 = const()[name = tensor("op_115"), val = tensor([0, 2, 1])]; tensor var_118_axes_0 = const()[name = tensor("op_118_axes_0"), val = tensor([1])]; tensor var_116 = transpose(perm = var_115, x = features)[name = tensor("transpose_0")]; tensor fbank_features = expand_dims(axes = var_118_axes_0, x = var_116)[name = tensor("op_118")]; } -> (fbank_features); }