maaza-nlm-orchestrator-9.6m
95% tool accuracy (in-distribution) Β· 35ms latency Β· 9.60M parameters
The fastest raw orchestrator ever shipped under 20M parameters. The official routing brain for the MCPBodega ecosystem.
Performance (v1.0 β December 2025)
| Evaluation Set | Accuracy | Notes |
|---|---|---|
| In-distribution | 95% | Standard phrasing |
| Novel paraphrases | 65% | Reasonable rewording |
| Adversarial (typos/slang) | 25% | Extreme cases |
| Valid JSON | 99.7% | Always parsable |
| Latency | 35ms | RTX 4080 Β· fp16 Β· batch=1 |
With production wrapper (spell-check + one retry, +<60ms): β 92β94% end-to-end success at <110ms average (still phone-capable)
This is exactly how Replicate, LangGraph, Dust.tt, and every serious edge stack ships <20M routers in 2025.
Raw model is public and pure. Production deployments use the wrapper.
Paper
Task-Specialized Micro Language Models Outperform Larger Zero-Shot Models on Structured Data Extraction
Authors: CycleCore Technologies Date: November 22, 2025 Version: 0.7
NLM Taxonomy (CycleCore, 2025)
| Category | Parameters | Typical Capability |
|---|---|---|
| NLM | <10M | Routing, classification, orchestration |
| MLM | 10β250M | Structured extraction |
| SLM | 250Mβ1.5B | Reliable reasoning + extraction |
| LLM | >1.5B | General-purpose reasoning |
maaza-nlm-orchestrator-9.6m is the current flagship of the NLM category.
Model Card
| Metric | Value |
|---|---|
| Parameters | 9,600,000 |
| Architecture | 7-layer Transformer decoder, SwiGLU, RoPE |
| Hidden size / Heads | 320 / 8 |
| Vocabulary | 8,000 (BPE, tool-aware) |
| Context length | 512 tokens |
Trained exclusively on 36 real, production-ready MCP tools from MCPBodega (Doom, Puppeteer, code execution, file I/O, database queries, etc.). No synthetic or placeholder tools.
Comparison
| Model | Parameters | Tool Accuracy | Latency |
|---|---|---|---|
| maaza-nlm-orchestrator-9.6m | 9.6M | 95% | 35ms |
| NVIDIA Orchestrator-8B | 8B | 78% | β₯800ms |
| Gorilla-7B | 7B | 52β58% | 1β3s |
| ToolLlama-7B | 7B | 48β55% | 2β4s |
Ranks #1 under 20M parameters on latency-adjusted tool routing.
One-line deployment
mcpbodega deploy nano-orchestrator
Usage Example (PyTorch)
from model import MaazaNanoModel, MaazaNanoConfig
from tokenizer import BPETokenizer
import torch, json
tokenizer = BPETokenizer.load("tokenizer.json")
config = MaazaNanoConfig(**json.load(open("config.json")))
model = MaazaNanoModel(config)
model.load_state_dict(torch.load("model.pt", weights_only=True))
model.eval().cuda()
prompt = "<|user|>search for cats on the internet<|assistant|>"
input_ids = torch.tensor([tokenizer.encode(prompt)]).cuda()
with torch.no_grad():
for _ in range(64):
logits = model(input_ids)["logits"]
next_token = logits[0, -1].argmax(-1)
input_ids = torch.cat([input_ids, next_token[None, None]], dim=-1)
if next_token.item() in tokenizer.special_tokens.values():
break
print(tokenizer.decode(input_ids[0].tolist()))
# β [{"tool": "web_search", "params": {"query": "cats"}}]
Production Wrapper (92β94% end-to-end)
For production deployments, use the included production_router.py which adds spell-correction and retry logic:
from production_router import route_with_retry
result = route_with_retry("serch for cats on teh interent", model, tokenizer)
# Handles typos, retries on invalid JSON β 92-94% success rate
Supported Tools (36)
| Tool | Description |
|---|---|
web_search |
Search the web |
web_fetch |
Fetch URL content |
file_read |
Read local files |
file_write |
Write local files |
code_execute_python |
Run Python code |
code_execute_bash |
Run shell commands |
code_execute_js |
Run JavaScript |
email_send |
Send emails |
slack_send |
Send Slack messages |
calendar_add |
Create calendar events |
database_query |
Query databases |
puppeteer_navigate |
Browser navigation |
puppeteer_click |
Browser clicks |
puppeteer_screenshot |
Take screenshots |
doom_mcp |
Play Doom |
bitchat_send |
BLE mesh chat |
voice_mcp |
Text-to-speech |
maaza_extract_json |
Extract structured data |
json_validate |
Validate JSON |
csv_parse |
Parse CSV files |
regex_match |
Pattern matching |
calculator |
Math operations |
weather_lookup |
Weather data |
crypto_lookup |
Crypto prices |
stock_lookup |
Stock prices |
news_fetch |
News headlines |
mcpbodega_chat |
MCPBodega chat rooms |
mcpbodega_deploy |
Deploy MCPs |
mcpbodega_list |
List MCPs |
github_issue |
Create GitHub issues |
scratchpad_mcp |
Temporary storage |
health_check |
Service health checks |
cyclecore_terminal |
Terminal commands |
image_caption |
Image descriptions |
slmbench_query |
Benchmark queries |
translator |
Translation |
License
Apache 2.0
Citation
@misc{cyclecore2025maaza-nlm,
author = {CycleCore Technologies},
title = {Task-Specialized Micro Language Models Outperform Larger Zero-Shot Models on Structured Data Extraction},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/CycleCoreTechnologies/maaza-nlm-orchestrator-9.6m}
}
CycleCore Technologies Β· @CycleCoreTech
cyclecore.ai Β· mcpbodega.com Β· slmbench.com
December 2025
- Downloads last month
- 22
Space using CycleCoreTechnologies/maaza-nlm-orchestrator-9.6m 1
Evaluation results
- Tool Selection Accuracy (In-Distribution)self-reported95.000
- Average Latency (ms)self-reported35.000