--- library_name: transformers license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9300033411293017 - name: Recall type: recall value: 0.9368899360484685 - name: F1 type: f1 value: 0.9334339369550636 - name: Accuracy type: accuracy value: 0.9889023013122542 --- # distilbert-ner This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0454 - Precision: 0.9300 - Recall: 0.9369 - F1: 0.9334 - Accuracy: 0.9889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.182 | 1.0 | 878 | 0.0564 | 0.9023 | 0.9111 | 0.9067 | 0.9843 | | 0.038 | 2.0 | 1756 | 0.0504 | 0.9253 | 0.9298 | 0.9276 | 0.9876 | | 0.0208 | 3.0 | 2634 | 0.0454 | 0.9300 | 0.9369 | 0.9334 | 0.9889 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1