|
|
""" |
|
|
Standalone KORMo MTP Model Wrapper for Hugging Face Hub |
|
|
This file contains all necessary components embedded within it to work without external kormo dependencies. |
|
|
""" |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from typing import Callable, List, Optional, Tuple, Union, Any |
|
|
import math |
|
|
import logging |
|
|
import os |
|
|
from pathlib import Path |
|
|
|
|
|
|
|
|
from transformers import PretrainedConfig, PreTrainedModel, GenerationMixin |
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache |
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, rope_config_validation |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import LossKwargs, logging as transformers_logging |
|
|
from transformers.utils.import_utils import is_torch_flex_attn_available, is_torch_greater_or_equal |
|
|
|
|
|
|
|
|
if is_torch_flex_attn_available(): |
|
|
from torch.nn.attention.flex_attention import create_block_mask, BlockMask, and_masks, or_masks |
|
|
else: |
|
|
BlockMask = torch.Tensor |
|
|
def create_block_mask(*args, **kwargs): |
|
|
return None |
|
|
def and_masks(*args, **kwargs): |
|
|
return None |
|
|
def or_masks(*args, **kwargs): |
|
|
return None |
|
|
|
|
|
logger = transformers_logging.get_logger(__name__) |
|
|
|
|
|
def print_once(message: str) -> None: |
|
|
if not getattr(print_once, "_has_printed", False): |
|
|
print(message) |
|
|
print_once._has_printed = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class KORMoConfig(PretrainedConfig): |
|
|
model_type = "kormo" |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
base_model_tp_plan = { |
|
|
"layers.*.self_attn.q_proj": "colwise", |
|
|
"layers.*.self_attn.k_proj": "colwise", |
|
|
"layers.*.self_attn.v_proj": "colwise", |
|
|
"layers.*.self_attn.o_proj": "rowwise", |
|
|
"layers.*.mlp.gate_proj": "colwise", |
|
|
"layers.*.mlp.up_proj": "colwise", |
|
|
"layers.*.mlp.down_proj": "rowwise", |
|
|
} |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size=112576, |
|
|
hidden_size=6144, |
|
|
intermediate_size=21504, |
|
|
num_hidden_layers=48, |
|
|
num_attention_heads=40, |
|
|
num_key_value_heads=8, |
|
|
hidden_act="silu", |
|
|
max_position_embeddings=131072, |
|
|
initializer_range=0.02, |
|
|
rms_norm_eps=1e-05, |
|
|
use_cache=True, |
|
|
pad_token_id=None, |
|
|
bos_token_id=0, |
|
|
eos_token_id=1, |
|
|
pretraining_tp=1, |
|
|
tie_word_embeddings=False, |
|
|
rope_theta=500000.0, |
|
|
attention_bias=False, |
|
|
attention_dropout=0.0, |
|
|
rope_scaling=None, |
|
|
mlp_bias=False, |
|
|
head_dim=128, |
|
|
sliding_window=None, |
|
|
post_ln_layer_end_idx=8, |
|
|
mtp_depth=0, |
|
|
mtp_loss_lambda=0.0, |
|
|
**kwargs, |
|
|
): |
|
|
self.vocab_size = vocab_size |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
|
|
|
if num_key_value_heads is None: |
|
|
num_key_value_heads = num_attention_heads |
|
|
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
self.hidden_act = hidden_act |
|
|
self.initializer_range = initializer_range |
|
|
self.rms_norm_eps = rms_norm_eps |
|
|
self.pretraining_tp = pretraining_tp |
|
|
self.use_cache = use_cache |
|
|
self.rope_theta = rope_theta |
|
|
self.rope_scaling = rope_scaling |
|
|
self.attention_bias = attention_bias |
|
|
self.attention_dropout = attention_dropout |
|
|
self.mlp_bias = mlp_bias |
|
|
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads |
|
|
self.sliding_window = sliding_window |
|
|
self.post_ln_layer_end_idx = post_ln_layer_end_idx |
|
|
self.mtp_depth = mtp_depth |
|
|
self.mtp_loss_lambda = mtp_loss_lambda |
|
|
self.mask_type = None |
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
|
rope_config_validation(self) |
|
|
|
|
|
super().__init__( |
|
|
pad_token_id=pad_token_id, |
|
|
bos_token_id=bos_token_id, |
|
|
eos_token_id=eos_token_id, |
|
|
tie_word_embeddings=tie_word_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_sliding_window(sliding_window): |
|
|
def inner_mask(b, h, q_idx, kv_idx): |
|
|
return kv_idx > q_idx - sliding_window |
|
|
return inner_mask |
|
|
|
|
|
def generate_doc_mask(input_ids, bos_token_id): |
|
|
is_bos = (input_ids.flatten() == bos_token_id) |
|
|
flat_doc_ids = torch.cumsum(is_bos, 0) |
|
|
doc_ids = flat_doc_ids.view_as(input_ids) |
|
|
|
|
|
def inner_mask(b, h, q_idx, kv_idx): |
|
|
same_doc = doc_ids[b, q_idx] == doc_ids[b, kv_idx] |
|
|
return same_doc |
|
|
return inner_mask |
|
|
|
|
|
def generate_bos_mask(input_ids, bos_token_id): |
|
|
is_bos_table = input_ids == bos_token_id |
|
|
|
|
|
def inner_mask(b, h, q_idx, kv_idx): |
|
|
is_bos = is_bos_table[b, kv_idx] |
|
|
return is_bos |
|
|
|
|
|
return inner_mask |
|
|
|
|
|
def create_causal_mask( |
|
|
config: KORMoConfig, |
|
|
input_embeds: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
cache_position: torch.Tensor, |
|
|
past_key_values: Optional[Cache], |
|
|
and_mask_function: Optional[Callable] = None, |
|
|
or_mask_function: Optional[Callable] = None, |
|
|
) -> Optional[Union[torch.Tensor, BlockMask]]: |
|
|
"""Create causal mask for flex attention""" |
|
|
if config._attn_implementation != "flex_attention": |
|
|
return None |
|
|
|
|
|
if and_mask_function is None and or_mask_function is None: |
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RMSNorm(nn.Module): |
|
|
"""KORMoRMSNorm is equivalent to T5LayerNorm""" |
|
|
def __init__(self, hidden_size: int, eps: float = 1e-6): |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return (self.weight * hidden_states).to(input_dtype) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
ALL_LAYERNORM_LAYERS.append(RMSNorm) |
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
|
def __init__(self, config: KORMoConfig, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
def _dynamic_frequency_update(self, position_ids, device): |
|
|
""" |
|
|
dynamic RoPE layers should recompute `inv_freq` in the following situations: |
|
|
1 - growing beyond the cached sequence length (allow scaling) |
|
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences) |
|
|
""" |
|
|
seq_len = torch.max(position_ids) + 1 |
|
|
if seq_len > self.max_seq_len_cached: |
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.max_seq_len_cached = seq_len |
|
|
|
|
|
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: |
|
|
self.original_inv_freq = self.original_inv_freq.to(device) |
|
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) |
|
|
self.max_seq_len_cached = self.original_max_seq_len |
|
|
|
|
|
@torch.no_grad() |
|
|
def forward(self, x, position_ids): |
|
|
if "dynamic" in self.rope_type: |
|
|
self._dynamic_frequency_update(position_ids, device=x.device) |
|
|
|
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type |
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() |
|
|
sin = emb.sin() |
|
|
|
|
|
|
|
|
cos = cos * self.attention_scaling |
|
|
sin = sin * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
class MLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
output = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
return output |
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1): |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed.to(q.dtype), k_embed.to(k.dtype) |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs, |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class Attention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: KORMoConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False) |
|
|
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) |
|
|
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) |
|
|
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_value: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs, |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view(hidden_shape).transpose(1, 2) |
|
|
key_states = key_states.view(hidden_shape).transpose(1, 2) |
|
|
value_states = value_states.view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_value is not None: |
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
class PreNormDecoderLayer(nn.Module): |
|
|
def __init__(self, config: KORMoConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.self_attn = Attention(config=config, layer_idx=layer_idx) |
|
|
self.mlp = MLP(config) |
|
|
self.pre_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.pre_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
residual = hidden_states |
|
|
|
|
|
|
|
|
hidden_states = self.pre_attention_layernorm(hidden_states) |
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.pre_mlp_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
class PostNormDecoderLayer(nn.Module): |
|
|
def __init__(self, config: KORMoConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.self_attn = Attention(config=config, layer_idx=layer_idx) |
|
|
self.mlp = MLP(config) |
|
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
residual = hidden_states |
|
|
|
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
hidden_states = self.post_mlp_layernorm(hidden_states) |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MTPModule(nn.Module): |
|
|
""" |
|
|
k번째 MTP 모듈: 이전 단계 표현과 미래 토큰 임베딩을 결합하여 |
|
|
projection 및 TRM_k Transformer 블록을 통해 새로운 표현을 생성합니다. |
|
|
""" |
|
|
def __init__(self, config: KORMoConfig, module_index: int): |
|
|
super().__init__() |
|
|
d = config.hidden_size |
|
|
self.rmsnorm_prev = RMSNorm(d, eps=config.rms_norm_eps) |
|
|
self.rmsnorm_emb = RMSNorm(d, eps=config.rms_norm_eps) |
|
|
self.proj = nn.Linear(2 * d, d, bias=False) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
self.proj.weight.normal_(mean=0.0, std=0.02 / (2 * d) ** 0.5) |
|
|
|
|
|
mtp_layer_idx = config.num_hidden_layers + module_index |
|
|
if mtp_layer_idx < config.post_ln_layer_end_idx: |
|
|
self.trm = PostNormDecoderLayer(config, mtp_layer_idx) |
|
|
else: |
|
|
self.trm = PreNormDecoderLayer(config, mtp_layer_idx) |
|
|
self.rotary_emb = RotaryEmbedding(config) |
|
|
|
|
|
def forward(self, hidden_prev: torch.Tensor, emb_future: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
h1 = self.rmsnorm_prev(hidden_prev) |
|
|
h2 = self.rmsnorm_emb(emb_future.to(hidden_prev.dtype)) |
|
|
|
|
|
x = torch.cat([h1, h2], dim=-1) |
|
|
proj_dtype = self.proj.weight.dtype |
|
|
x = self.proj(x.to(proj_dtype)) |
|
|
|
|
|
batch_size, seq_len, _ = x.size() |
|
|
position_ids = torch.arange(seq_len, device=x.device).unsqueeze(0).expand(batch_size, -1) |
|
|
cos, sin = self.rotary_emb(x, position_ids) |
|
|
|
|
|
output = self.trm( |
|
|
x, |
|
|
position_ids=position_ids, |
|
|
position_embeddings=(cos, sin), |
|
|
) |
|
|
|
|
|
hidden = output[0] if isinstance(output, tuple) else output |
|
|
|
|
|
hidden = torch.nan_to_num(hidden, nan=0.0, posinf=0.0, neginf=0.0) |
|
|
return hidden |
|
|
|
|
|
class MTP(nn.Module): |
|
|
""" |
|
|
전체 MTP 헤드: D개의 순차적 MTPModule을 묶어 multi-token 예측을 수행합니다. |
|
|
""" |
|
|
def __init__(self, config: KORMoConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.mtp_modules = nn.ModuleList([ |
|
|
MTPModule(config, k) for k in range(config.mtp_depth) |
|
|
]) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor, future_embs: list[torch.Tensor]) -> list[torch.Tensor]: |
|
|
|
|
|
|
|
|
outputs = [] |
|
|
h = hidden_states |
|
|
for k, mtp_mod in enumerate(self.mtp_modules): |
|
|
h = mtp_mod(h, future_embs[k]) |
|
|
outputs.append(h) |
|
|
return outputs |
|
|
|
|
|
class MTPLoss(nn.Module): |
|
|
""" |
|
|
MTP 손실 계산: 각 모듈의 cross-entropy 손실을 합/평균하여 최종 손실을 반환합니다. |
|
|
""" |
|
|
def __init__(self, config: KORMoConfig): |
|
|
super().__init__() |
|
|
pad_id = config.pad_token_id or config.eos_token_id or 0 |
|
|
self.ce = nn.CrossEntropyLoss(ignore_index=pad_id, reduction='none') |
|
|
self.lambda_mtp = config.mtp_loss_lambda |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
mtp_logits: list[torch.Tensor], |
|
|
target_ids: torch.LongTensor, |
|
|
) -> torch.Tensor: |
|
|
vocab_size = mtp_logits[0].size(-1) if mtp_logits else 0 |
|
|
ignore_idx = self.ce.ignore_index |
|
|
target_ids = target_ids.clone() |
|
|
target_ids = torch.where(target_ids < 0, ignore_idx, target_ids) |
|
|
target_ids = torch.where(target_ids >= vocab_size, ignore_idx, target_ids) |
|
|
losses: list[torch.Tensor] = [] |
|
|
total_valid_tokens = 0 |
|
|
|
|
|
for k, logits in enumerate(mtp_logits, start=1): |
|
|
try: |
|
|
|
|
|
labels_k = target_ids[:, k-1, : logits.size(1)] |
|
|
|
|
|
|
|
|
if torch.isnan(labels_k).any() or torch.isinf(labels_k).any(): |
|
|
logger.warning(f"NaN/Inf detected in labels_k for MTP module {k}") |
|
|
continue |
|
|
|
|
|
|
|
|
labels_k_flat = labels_k.reshape(-1) |
|
|
|
|
|
mask = (labels_k_flat != self.ce.ignore_index) |
|
|
|
|
|
|
|
|
if torch.isnan(mask.float()).any(): |
|
|
logger.warning(f"NaN detected in mask for MTP module {k}") |
|
|
continue |
|
|
|
|
|
num_valid = mask.float().sum() |
|
|
total_valid_tokens += num_valid |
|
|
|
|
|
if num_valid > 0: |
|
|
|
|
|
logits_flat = logits.reshape(-1, vocab_size) |
|
|
|
|
|
|
|
|
if torch.isnan(logits_flat).any() or torch.isinf(logits_flat).any(): |
|
|
logger.warning(f"NaN/Inf detected in logits for MTP module {k}") |
|
|
continue |
|
|
|
|
|
loss_k = self.ce(logits_flat, labels_k_flat) |
|
|
|
|
|
|
|
|
if torch.isnan(loss_k).any() or torch.isinf(loss_k).any(): |
|
|
logger.warning(f"NaN/Inf detected in loss_k for MTP module {k}") |
|
|
continue |
|
|
|
|
|
losses.append((loss_k * mask).sum() / num_valid) |
|
|
|
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error processing MTP module {k}: {e}") |
|
|
continue |
|
|
|
|
|
if losses and total_valid_tokens > 0: |
|
|
loss = sum(losses) / len(losses) |
|
|
loss = loss * self.lambda_mtp |
|
|
|
|
|
|
|
|
if torch.isnan(loss) or torch.isinf(loss): |
|
|
loss = torch.tensor(0.0, device=target_ids.device, dtype=loss.dtype) |
|
|
else: |
|
|
|
|
|
loss = torch.tensor(0.0, device=target_ids.device, dtype=torch.float32) |
|
|
|
|
|
return loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class KORMoPreTrainedModel(PreTrainedModel): |
|
|
config_class = KORMoConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["PreNormDecoderLayer", "PostNormDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn_2 = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_supports_cache_class = True |
|
|
_supports_quantized_cache = True |
|
|
_supports_static_cache = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
class KORMoModel(KORMoPreTrainedModel): |
|
|
""" |
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PreNormDecoderLayer`, `PostNormDecoderLayer`] |
|
|
Args: |
|
|
config: KORMoConfig |
|
|
""" |
|
|
|
|
|
def __init__(self, config: KORMoConfig): |
|
|
super().__init__(config) |
|
|
post_ln_index = config.post_ln_layer_end_idx |
|
|
|
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[PostNormDecoderLayer(config, layer_idx) for layer_idx in range(post_ln_index)] + |
|
|
[PreNormDecoderLayer(config, layer_idx) for layer_idx in range(post_ln_index, config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = RotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
|
logger.warning_once( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
|
|
|
causal_mask = self._update_causal_mask( |
|
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
decoder_layer.__call__, |
|
|
hidden_states, |
|
|
causal_mask, |
|
|
position_ids, |
|
|
past_key_values, |
|
|
output_attentions, |
|
|
use_cache, |
|
|
cache_position, |
|
|
position_embeddings, |
|
|
) |
|
|
else: |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**flash_attn_kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
output = BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if use_cache else None, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
return output if return_dict else output.to_tuple() |
|
|
|
|
|
def _update_causal_mask( |
|
|
self, |
|
|
attention_mask: torch.Tensor, |
|
|
input_tensor: torch.Tensor, |
|
|
cache_position: torch.Tensor, |
|
|
past_key_values: Cache, |
|
|
output_attentions: bool, |
|
|
): |
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
if attention_mask is not None and past_key_values is not None: |
|
|
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] |
|
|
if is_padding_right: |
|
|
raise ValueError( |
|
|
"You are attempting to perform batched generation with padding_side='right'" |
|
|
" this may lead to unexpected behaviour for Flash Attention version of KORMo. Make sure to " |
|
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
|
) |
|
|
if attention_mask is not None and 0.0 in attention_mask: |
|
|
return attention_mask |
|
|
return None |
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
|
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) |
|
|
|
|
|
if ( |
|
|
self.config._attn_implementation == "sdpa" |
|
|
and not (using_static_cache or using_sliding_window_cache) |
|
|
and not output_attentions |
|
|
): |
|
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
|
attention_mask, |
|
|
inputs_embeds=input_tensor, |
|
|
past_key_values_length=past_seen_tokens, |
|
|
sliding_window=self.config.sliding_window, |
|
|
is_training=self.training, |
|
|
): |
|
|
return None |
|
|
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
|
min_dtype = torch.finfo(dtype).min |
|
|
sequence_length = input_tensor.shape[1] |
|
|
|
|
|
if using_sliding_window_cache or using_static_cache: |
|
|
target_length = past_key_values.get_max_cache_shape() |
|
|
else: |
|
|
target_length = ( |
|
|
attention_mask.shape[-1] |
|
|
if isinstance(attention_mask, torch.Tensor) |
|
|
else past_seen_tokens + sequence_length + 1 |
|
|
) |
|
|
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
|
attention_mask, |
|
|
sequence_length=sequence_length, |
|
|
target_length=target_length, |
|
|
dtype=dtype, |
|
|
device=device, |
|
|
cache_position=cache_position, |
|
|
batch_size=input_tensor.shape[0], |
|
|
config=self.config, |
|
|
past_key_values=past_key_values, |
|
|
) |
|
|
|
|
|
if ( |
|
|
self.config._attn_implementation == "sdpa" |
|
|
and attention_mask is not None |
|
|
and attention_mask.device.type == "cuda" |
|
|
and not output_attentions |
|
|
): |
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
|
|
return causal_mask |
|
|
|
|
|
@staticmethod |
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
|
attention_mask: torch.Tensor, |
|
|
sequence_length: int, |
|
|
target_length: int, |
|
|
dtype: torch.dtype, |
|
|
device: torch.device, |
|
|
cache_position: torch.Tensor, |
|
|
batch_size: int, |
|
|
config: KORMoConfig, |
|
|
past_key_values: Cache, |
|
|
): |
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
causal_mask = attention_mask |
|
|
else: |
|
|
min_dtype = torch.finfo(dtype).min |
|
|
causal_mask = torch.full( |
|
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device |
|
|
) |
|
|
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
|
if config.sliding_window is not None: |
|
|
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: |
|
|
sliding_attend_mask = torch.arange(target_length, device=device) <= ( |
|
|
cache_position.reshape(-1, 1) - config.sliding_window |
|
|
) |
|
|
diagonal_attend_mask.bitwise_or_(sliding_attend_mask) |
|
|
causal_mask *= diagonal_attend_mask |
|
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
|
if attention_mask is not None: |
|
|
causal_mask = causal_mask.clone() |
|
|
if attention_mask.shape[-1] > target_length: |
|
|
attention_mask = attention_mask[:, :target_length] |
|
|
mask_length = attention_mask.shape[-1] |
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
|
padding_mask = padding_mask == 0 |
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
|
padding_mask, min_dtype |
|
|
) |
|
|
return causal_mask |
|
|
|
|
|
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): |
|
|
pass |
|
|
|
|
|
class KORMoForCausalLM(KORMoPreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = KORMoModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
num_logits_to_keep: int = 0, |
|
|
**kwargs: Unpack[KwargsForCausalLM], |
|
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] |
|
|
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class KORMoForCausalLMWithMTP(KORMoForCausalLM): |
|
|
|
|
|
def save_pretrained(self, save_directory, **kwargs): |
|
|
""" |
|
|
Save the MTP model, including the base model and the MTP head. |
|
|
""" |
|
|
|
|
|
self.config.architectures = [self.__class__.__name__] |
|
|
|
|
|
|
|
|
super().save_pretrained(save_directory, **kwargs) |
|
|
|
|
|
|
|
|
if self.mtp_head is not None: |
|
|
mtp_head_path = os.path.join(save_directory, "mtp_head.pt") |
|
|
torch.save(self.mtp_head.state_dict(), mtp_head_path) |
|
|
print(f"✅ MTP head saved to {mtp_head_path}") |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained(cls, model_path, **kwargs): |
|
|
""" |
|
|
Load MTP model from checkpoint or create from base model - Hugging Face style! |
|
|
""" |
|
|
|
|
|
config = KORMoConfig.from_pretrained(model_path) |
|
|
|
|
|
|
|
|
model = cls(config) |
|
|
|
|
|
|
|
|
base_model_state_dict = KORMoForCausalLM.from_pretrained(model_path, **kwargs).state_dict() |
|
|
model.load_state_dict(base_model_state_dict, strict=False) |
|
|
|
|
|
|
|
|
mtp_head_path = os.path.join(model_path, "mtp_head.pt") |
|
|
if os.path.exists(mtp_head_path) and model.mtp_head is not None: |
|
|
model.mtp_head.load_state_dict(torch.load(mtp_head_path, map_location=model.device)) |
|
|
print(f"✅ MTP head loaded from {mtp_head_path}") |
|
|
|
|
|
return model |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
if getattr(config, 'mtp_depth', 0) > 0: |
|
|
self.mtp_head = MTP(config) |
|
|
self.mtp_loss_fn = MTPLoss(config) |
|
|
else: |
|
|
self.mtp_head = None |
|
|
self.mtp_loss_fn = None |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: torch.Tensor = None, |
|
|
position_ids: torch.LongTensor = None, |
|
|
past_key_values: Any = None, |
|
|
inputs_embeds: torch.FloatTensor = None, |
|
|
labels: torch.LongTensor = None, |
|
|
mtp_labels: torch.LongTensor = None, |
|
|
use_cache: bool = None, |
|
|
output_attentions: bool = None, |
|
|
output_hidden_states: bool = None, |
|
|
return_dict: bool = None, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
device = self.lm_head.weight.device |
|
|
if input_ids is not None: |
|
|
input_ids = input_ids.to(device) |
|
|
if attention_mask is not None: |
|
|
attention_mask = attention_mask.to(device) |
|
|
if position_ids is not None: |
|
|
position_ids = position_ids.to(device) |
|
|
if inputs_embeds is not None: |
|
|
inputs_embeds = inputs_embeds.to(device) |
|
|
if labels is not None: |
|
|
labels = labels.to(device) |
|
|
if mtp_labels is not None: |
|
|
mtp_labels = mtp_labels.to(device) |
|
|
|
|
|
if getattr(self.config, 'mtp_depth', 0) <= 0 or self.mtp_head is None: |
|
|
return super().forward( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
labels=labels, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
outputs = super().forward( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=None, |
|
|
inputs_embeds=inputs_embeds, |
|
|
labels=labels, |
|
|
use_cache=False, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=True, |
|
|
return_dict=True, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
hidden_states = outputs.hidden_states[-1] |
|
|
|
|
|
batch_size, seq_len, _ = hidden_states.size() |
|
|
pad_id = self.config.pad_token_id or self.config.eos_token_id or 0 |
|
|
future_embs = [] |
|
|
|
|
|
|
|
|
for k in range(1, self.config.mtp_depth + 1): |
|
|
tid = torch.cat( |
|
|
[input_ids[:, k:], input_ids.new_full((batch_size, k), pad_id)], |
|
|
dim=1, |
|
|
) |
|
|
future_embs.append(self.get_input_embeddings()(tid)) |
|
|
|
|
|
|
|
|
mtp_hidden = self.mtp_head(hidden_states, future_embs) |
|
|
|
|
|
|
|
|
mtp_logits = [] |
|
|
for i, h in enumerate(mtp_hidden): |
|
|
|
|
|
if torch.isnan(h).any() or torch.isinf(h).any(): |
|
|
h = torch.nan_to_num(h, nan=0.0, posinf=1e6, neginf=-1e6) |
|
|
logits = self.lm_head(h) |
|
|
|
|
|
if torch.isnan(logits).any() or torch.isinf(logits).any(): |
|
|
logits = torch.nan_to_num(logits, nan=0.0, posinf=1e6, neginf=-1e6) |
|
|
mtp_logits.append(logits) |
|
|
|
|
|
mtp_loss = None |
|
|
if mtp_labels is not None: |
|
|
mtp_loss = self.mtp_loss_fn(mtp_logits, mtp_labels) |
|
|
|
|
|
if torch.isnan(mtp_loss) or torch.isinf(mtp_loss): |
|
|
mtp_loss = torch.tensor(0.0, device=hidden_states.device, dtype=mtp_loss.dtype) |
|
|
|
|
|
base_loss = outputs.loss if outputs.loss is not None else torch.tensor(0.0, device=hidden_states.device) |
|
|
if mtp_loss is not None: |
|
|
loss = base_loss + mtp_loss |
|
|
else: |
|
|
loss = base_loss |
|
|
|
|
|
if not return_dict: |
|
|
|
|
|
logits = outputs.logits |
|
|
past_kv = outputs.past_key_values or () |
|
|
|
|
|
return (loss, logits, *past_kv) |
|
|
|
|
|
|
|
|
class CausalLMOutputWithMTP(CausalLMOutputWithPast): |
|
|
def __init__(self, loss=None, logits=None, past_key_values=None, |
|
|
hidden_states=None, attentions=None, mtp_logits=None): |
|
|
super().__init__(loss=loss, logits=logits, past_key_values=past_key_values, |
|
|
hidden_states=hidden_states, attentions=attentions) |
|
|
self.mtp_logits = mtp_logits |
|
|
|
|
|
|
|
|
mtp_logits_tensor = None |
|
|
if mtp_logits: |
|
|
|
|
|
mtp_logits_tensor = torch.stack(mtp_logits, dim=1) |
|
|
|
|
|
return CausalLMOutputWithMTP( |
|
|
loss=loss, |
|
|
logits=outputs.logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
mtp_logits=mtp_logits_tensor, |
|
|
) |
|
|
|
|
|
def generate( |
|
|
self, |
|
|
input_ids: torch.Tensor, |
|
|
max_new_tokens: int = 50, |
|
|
temperature: float = 1.0, |
|
|
top_p: float = 0.9, |
|
|
top_k: int = 50, |
|
|
do_sample: bool = True, |
|
|
speculative_decode: bool = False, |
|
|
pad_token_id: Optional[int] = None, |
|
|
eos_token_id: Optional[int] = None, |
|
|
**kwargs |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Generate text using MTP model with optional speculative decoding. |
|
|
""" |
|
|
input_ids = input_ids.to(self.device) |
|
|
|
|
|
if pad_token_id is None: |
|
|
pad_token_id = getattr(self.config, 'pad_token_id', None) |
|
|
|
|
|
if eos_token_id is None: |
|
|
eos_token_id = getattr(self.config, 'eos_token_id', None) |
|
|
|
|
|
|
|
|
mtp_depth = getattr(self.config, 'mtp_depth', 0) |
|
|
if speculative_decode and mtp_depth > 0 and self.mtp_head is not None: |
|
|
return self._generate_speculative( |
|
|
input_ids=input_ids, |
|
|
max_new_tokens=max_new_tokens, |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
top_k=top_k, |
|
|
do_sample=do_sample, |
|
|
pad_token_id=pad_token_id, |
|
|
eos_token_id=eos_token_id, |
|
|
) |
|
|
else: |
|
|
|
|
|
return self._generate_standard( |
|
|
input_ids=input_ids, |
|
|
max_new_tokens=max_new_tokens, |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
top_k=top_k, |
|
|
do_sample=do_sample, |
|
|
pad_token_id=pad_token_id, |
|
|
eos_token_id=eos_token_id, |
|
|
) |
|
|
|
|
|
def _generate_standard( |
|
|
self, |
|
|
input_ids: torch.Tensor, |
|
|
max_new_tokens: int, |
|
|
temperature: float, |
|
|
top_p: float, |
|
|
top_k: int, |
|
|
do_sample: bool, |
|
|
pad_token_id: int, |
|
|
eos_token_id: int, |
|
|
) -> torch.Tensor: |
|
|
"""Standard autoregressive generation.""" |
|
|
current_ids = input_ids.clone() |
|
|
|
|
|
for _ in range(max_new_tokens): |
|
|
with torch.no_grad(): |
|
|
outputs = self(current_ids, return_dict=True) |
|
|
logits = outputs.logits[:, -1, :] |
|
|
|
|
|
|
|
|
if temperature != 1.0: |
|
|
logits = logits / temperature |
|
|
|
|
|
|
|
|
if do_sample: |
|
|
next_token = self._sample_token(logits, top_p, top_k) |
|
|
else: |
|
|
next_token = torch.argmax(logits, dim=-1, keepdim=True) |
|
|
|
|
|
|
|
|
current_ids = torch.cat([current_ids, next_token], dim=-1) |
|
|
|
|
|
|
|
|
if eos_token_id is not None and next_token.item() == eos_token_id: |
|
|
break |
|
|
|
|
|
return current_ids |
|
|
|
|
|
def _generate_speculative( |
|
|
self, |
|
|
input_ids: torch.Tensor, |
|
|
max_new_tokens: int, |
|
|
temperature: float, |
|
|
top_p: float, |
|
|
top_k: int, |
|
|
do_sample: bool, |
|
|
pad_token_id: int, |
|
|
eos_token_id: int, |
|
|
) -> torch.Tensor: |
|
|
"""Speculative decoding using the MTP head as a draft model and the main model as the verifier.""" |
|
|
current_ids = input_ids.clone() |
|
|
mtp_depth = getattr(self.config, 'mtp_depth', 0) |
|
|
remaining_tokens = max_new_tokens |
|
|
|
|
|
while remaining_tokens > 0: |
|
|
with torch.no_grad(): |
|
|
|
|
|
draft_outputs = self(current_ids, return_dict=True) |
|
|
main_logits = draft_outputs.logits[:, -1, :] |
|
|
mtp_logits = getattr(draft_outputs, 'mtp_logits', None) |
|
|
|
|
|
if mtp_logits is None: |
|
|
|
|
|
return self._generate_standard( |
|
|
current_ids, remaining_tokens, temperature, top_p, top_k, |
|
|
do_sample, pad_token_id, eos_token_id |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
mtp_preds = mtp_logits[:, :, -1, :] |
|
|
draft_logits = torch.cat([main_logits.unsqueeze(1), mtp_preds], dim=1) |
|
|
|
|
|
|
|
|
if do_sample: |
|
|
|
|
|
if temperature != 1.0: |
|
|
draft_logits = draft_logits / temperature |
|
|
|
|
|
draft_probs = F.softmax(draft_logits, dim=-1) |
|
|
draft_tokens_indices = torch.multinomial(draft_probs.view(-1, self.config.vocab_size), num_samples=1) |
|
|
draft_tokens = draft_tokens_indices.view(current_ids.size(0), -1) |
|
|
else: |
|
|
draft_tokens = torch.argmax(draft_logits, dim=-1) |
|
|
|
|
|
num_draft_tokens = draft_tokens.shape[1] |
|
|
|
|
|
|
|
|
candidate_ids = torch.cat([current_ids, draft_tokens], dim=-1) |
|
|
verify_outputs = self(candidate_ids, return_dict=True) |
|
|
|
|
|
|
|
|
verify_logits = verify_outputs.logits[:, current_ids.shape[-1]-1:-1, :] |
|
|
|
|
|
|
|
|
|
|
|
verifier_tokens = torch.argmax(verify_logits, dim=-1) |
|
|
|
|
|
|
|
|
matches = (draft_tokens == verifier_tokens) |
|
|
mismatch_indices = torch.where(~matches, 1, 0).argmax(dim=1) |
|
|
|
|
|
|
|
|
|
|
|
all_matches = matches.all(dim=1) |
|
|
|
|
|
accepted_len = 0 |
|
|
for i in range(matches.size(0)): |
|
|
if all_matches[i]: |
|
|
accepted_len = num_draft_tokens |
|
|
else: |
|
|
accepted_len = mismatch_indices[i].item() |
|
|
|
|
|
accepted_tokens = draft_tokens[:, :accepted_len] |
|
|
current_ids = torch.cat([current_ids, accepted_tokens], dim=-1) |
|
|
remaining_tokens -= accepted_len |
|
|
|
|
|
|
|
|
if accepted_len < num_draft_tokens: |
|
|
|
|
|
final_logits = verify_logits[:, accepted_len, :] |
|
|
if do_sample: |
|
|
if temperature != 1.0: |
|
|
final_logits = final_logits / temperature |
|
|
next_token = self._sample_token(final_logits, top_p, top_k) |
|
|
else: |
|
|
next_token = torch.argmax(final_logits, dim=-1, keepdim=True) |
|
|
|
|
|
current_ids = torch.cat([current_ids, next_token], dim=-1) |
|
|
remaining_tokens -= 1 |
|
|
|
|
|
else: |
|
|
final_logits = verify_outputs.logits[:, -1, :] |
|
|
if do_sample: |
|
|
if temperature != 1.0: |
|
|
final_logits = final_logits / temperature |
|
|
next_token = self._sample_token(final_logits, top_p, top_k) |
|
|
else: |
|
|
next_token = torch.argmax(final_logits, dim=-1, keepdim=True) |
|
|
|
|
|
current_ids = torch.cat([current_ids, next_token], dim=-1) |
|
|
remaining_tokens -= 1 |
|
|
|
|
|
if eos_token_id is not None and (current_ids[:, -1] == eos_token_id).any(): |
|
|
break |
|
|
|
|
|
return current_ids |
|
|
|
|
|
def _sample_token(self, logits: torch.Tensor, top_p: float, top_k: int) -> torch.Tensor: |
|
|
"""Sample token using top-p and top-k filtering.""" |
|
|
|
|
|
|
|
|
if top_k > 0: |
|
|
top_k = min(top_k, logits.size(-1)) |
|
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] |
|
|
logits[indices_to_remove] = float('-inf') |
|
|
|
|
|
|
|
|
if top_p < 1.0: |
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) |
|
|
|
|
|
|
|
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
|
|
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() |
|
|
sorted_indices_to_remove[..., 0] = 0 |
|
|
|
|
|
indices_to_remove = sorted_indices_to_remove.scatter( |
|
|
dim=-1, index=sorted_indices, src=sorted_indices_to_remove |
|
|
) |
|
|
logits[indices_to_remove] = float('-inf') |
|
|
|
|
|
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
next_token = torch.multinomial(probs, num_samples=1) |
|
|
|
|
|
return next_token |