Update README.md
Browse files
README.md
CHANGED
|
@@ -29,14 +29,24 @@ Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen
|
|
| 29 |
- 2/1/2024: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
|
| 30 |
|
| 31 |
|
| 32 |
-
##
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
| [BAAI/bge-
|
| 38 |
-
| [BAAI/bge-
|
| 39 |
-
| [BAAI/bge-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
|
| 42 |
|
|
@@ -232,19 +242,17 @@ Refer to our [report](https://github.com/FlagOpen/FlagEmbedding/blob/master/Flag
|
|
| 232 |
|
| 233 |
**The fine-tuning codes and datasets will be open-sourced in the near future.**
|
| 234 |
|
| 235 |
-
## Models
|
| 236 |
|
| 237 |
-
We release two versions:
|
| 238 |
-
- BAAI/bge-m3-unsupervised: the model after contrastive learning in a large-scale dataset
|
| 239 |
-
- BAAI/bge-m3: the final model fine-tuned from BAAI/bge-m3-unsupervised
|
| 240 |
|
| 241 |
## Acknowledgement
|
| 242 |
|
| 243 |
-
Thanks the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
|
|
|
|
|
|
|
| 244 |
|
| 245 |
## Citation
|
| 246 |
|
| 247 |
-
If you find this repository useful, please consider giving a star :star: and citation
|
| 248 |
|
| 249 |
```
|
| 250 |
|
|
|
|
| 29 |
- 2/1/2024: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
|
| 30 |
|
| 31 |
|
| 32 |
+
## Specs
|
| 33 |
|
| 34 |
+
- Model
|
| 35 |
+
| Model Name | Dimension | Sequence Length | Introduction |
|
| 36 |
+
|:----:|:---:|:---:|:---:|
|
| 37 |
+
| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | 1024 | 8192 | multilingual; unified fine-tuning (dense, sparse, and colbert) from bge-m3-unsupervised|
|
| 38 |
+
| [BAAI/bge-m3-unsupervised](https://huggingface.co/BAAI/bge-m3-unsupervised) | 1024 | 8192 | multilingual; contrastive learning from bge-m3-retromae |
|
| 39 |
+
| [BAAI/bge-m3-retromae](https://huggingface.co/BAAI/bge-m3-retromae) | -- | 8192 | multilingual; extend the max_length of [xlm-roberta](https://huggingface.co/FacebookAI/xlm-roberta-large) to 8192 and further pretrained via [retromae](https://github.com/staoxiao/RetroMAE)|
|
| 40 |
+
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | English model |
|
| 41 |
+
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | English model |
|
| 42 |
+
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | English model |
|
| 43 |
+
|
| 44 |
+
- Data
|
| 45 |
+
|
| 46 |
+
- Model
|
| 47 |
+
| Dataset | Introduction |
|
| 48 |
+
|:----:|:---:|
|
| 49 |
+
| [MLDR](https://huggingface.co/datasets/Shitao/MLDR) | Docuemtn Retrieval Dataset, covering 13 languages|
|
| 50 |
|
| 51 |
|
| 52 |
|
|
|
|
| 242 |
|
| 243 |
**The fine-tuning codes and datasets will be open-sourced in the near future.**
|
| 244 |
|
|
|
|
| 245 |
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
## Acknowledgement
|
| 248 |
|
| 249 |
+
Thanks to the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
|
| 250 |
+
Thanks to the open-sourced libraries like [Tevatron](https://github.com/texttron/tevatron), [pyserini](https://github.com/castorini/pyserini).
|
| 251 |
+
|
| 252 |
|
| 253 |
## Citation
|
| 254 |
|
| 255 |
+
If you find this repository useful, please consider giving a star :star: and a citation
|
| 256 |
|
| 257 |
```
|
| 258 |
|