SigLIP2-Giant + E5-Small-v2 + Gating Fine-tuned for Animal Identification
Fine-tuned multimodal model combining SigLIP2-Giant vision encoder with E5-Small-v2 text encoder for individual animal identification. This advanced architecture uses a learned gating mechanism to dynamically fuse image and text embeddings, specializing in distinguishing between unique cats and dogs. The model produces robust multimodal embeddings optimized for pet recognition, re-identification, and verification tasks.
Model Details
- Base Vision Model: google/siglip2-giant-opt-patch16-384
- Text Encoder: intfloat/e5-small-v2
- Image Input: Images (384x384)
- Text Input: Variable length text descriptions
- Final Output: Fused embeddings (512-dimensional) via learned gating
- Task: Individual animal identification and verification with multimodal inputs
Training Data
The model was trained on a comprehensive dataset combining multiple sources:
- PetFace Dataset: Large-scale animal face dataset with 257,484 unique individuals across 13 animal families
- Dogs-World: Kaggle dataset for dog breed and individual identification
- LCW (Labeled Cats in the Wild): Cat identification dataset
- Web-scraped Data: Additional curated images from various sources
Total Dataset Statistics:
- 1,904,157 total photographs
- 695,091 unique individual animals (cats and dogs)
Training Details
Training Configuration:
- Batch Size: 116 samples (58 unique identities × 2 photos each)
- Optimizer: Adam with learning rate 1e-4
- Training Duration: 10 epochs
- Transfer Learning: Final 5 transformer blocks unfrozen, lower layers frozen to preserve pre-trained features
Loss Function: The model is trained using a combined loss function consisting of:
- Triplet Loss (margin α=0.45): Encourages separation between different animal identities
- Intra-Pair Variance Regularization (ε=0.01): Promotes consistency across multiple photos of the same animal
Combined as: L_total = 1.0 × L_triplet + 0.5 × L_var
This approach creates compact feature clusters for each individual animal while maintaining large separation between different identities. The gating mechanism learns to dynamically balance image and text features for optimal performance.
Performance Metrics
The model has been benchmarked against various vision encoders on multiple pet recognition datasets:
Cat Individual Images Dataset
| Model | ROC AUC | EER | Top-1 | Top-5 | Top-10 |
|---|---|---|---|---|---|
| CLIP-ViT-Base | 0.9821 | 0.0604 | 0.8359 | 0.9579 | 0.9711 |
| DINOv2-Small | 0.9904 | 0.0422 | 0.8547 | 0.9660 | 0.9764 |
| SigLIP-Base | 0.9899 | 0.0390 | 0.8649 | 0.9757 | 0.9842 |
| SigLIP2-Base | 0.9894 | 0.0388 | 0.8660 | 0.9772 | 0.9863 |
| Zer0int CLIP-L | 0.9881 | 0.0509 | 0.8768 | 0.9767 | 0.9845 |
| SigLIP2-Giant | 0.9940 | 0.0344 | 0.8899 | 0.9868 | 0.9921 |
| SigLIP2-Giant + E5-Small-v2 + gating | 0.9929 | 0.0344 | 0.8952 | 0.9872 | 0.9932 |
DogFaceNet Dataset
| Model | ROC AUC | EER | Top-1 | Top-5 | Top-10 |
|---|---|---|---|---|---|
| CLIP-ViT-Base | 0.9739 | 0.0772 | 0.4350 | 0.6417 | 0.7204 |
| DINOv2-Small | 0.9829 | 0.0571 | 0.5581 | 0.7540 | 0.8139 |
| SigLIP-Base | 0.9792 | 0.0606 | 0.5848 | 0.7746 | 0.8319 |
| SigLIP2-Base | 0.9776 | 0.0672 | 0.5925 | 0.7856 | 0.8422 |
| Zer0int CLIP-L | 0.9814 | 0.0625 | 0.6289 | 0.8092 | 0.8597 |
| SigLIP2-Giant | 0.9926 | 0.0326 | 0.7475 | 0.9009 | 0.9316 |
| SigLIP2-Giant + E5-Small-v2 + gating | 0.9920 | 0.0314 | 0.7818 | 0.9233 | 0.9482 |
Combined Test Dataset (Overall Performance)
| Model | ROC AUC | EER | Top-1 | Top-5 | Top-10 |
|---|---|---|---|---|---|
| CLIP-ViT-Base | 0.9752 | 0.0729 | 0.6511 | 0.8122 | 0.8555 |
| DINOv2-Small | 0.9848 | 0.0546 | 0.7180 | 0.8678 | 0.9009 |
| SigLIP-Base | 0.9811 | 0.0572 | 0.7359 | 0.8831 | 0.9140 |
| SigLIP2-Base | 0.9793 | 0.0631 | 0.7400 | 0.8889 | 0.9197 |
| Zer0int CLIP-L | 0.9842 | 0.0565 | 0.7626 | 0.8994 | 0.9267 |
| SigLIP2-Giant | 0.9912 | 0.0378 | 0.8243 | 0.9471 | 0.9641 |
| SigLIP2-Giant + E5-Small-v2 + gating | 0.9882 | 0.0422 | 0.8428 | 0.9576 | 0.9722 |
Metrics Explanation:
- ROC AUC: Area Under the Receiver Operating Characteristic Curve - measures the model's ability to distinguish between different individuals
- EER: Equal Error Rate - the error rate where false acceptance and false rejection rates are equal
- Top-K: Accuracy of correct identification within the top K predictions
Note: This multimodal model achieves the best overall Top-K accuracy scores by leveraging both visual and textual information through a learned gating mechanism.
Basic Usage
Installation
pip install transformers torch pillow safetensors huggingface_hub
Load Model and Get Embedding
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from transformers import SiglipModel, SiglipProcessor, AutoModel, AutoTokenizer
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
# Define the model architecture
class FaceRecognizer(nn.Module):
def __init__(self, embedding_dim=512):
super().__init__()
ckpt = "google/siglip2-giant-opt-patch16-384"
self.clip = SiglipModel.from_pretrained(ckpt)
self.processor = SiglipProcessor.from_pretrained(ckpt)
text_model_name = "intfloat/e5-small-v2"
self.text_encoder = AutoModel.from_pretrained(text_model_name)
self.tokenizer = AutoTokenizer.from_pretrained(text_model_name)
img_dim = self.clip.config.vision_config.hidden_size
text_dim = self.text_encoder.config.hidden_size
self.proj_img = nn.Linear(img_dim, embedding_dim)
self.proj_text = nn.Linear(text_dim, embedding_dim)
self.gate = nn.Sequential(
nn.Linear(embedding_dim * 2, 128),
nn.ReLU(),
nn.Linear(128, 2),
nn.Softmax(dim=-1)
)
def average_pool(self, last_hidden_states, attention_mask):
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def forward(self, images, texts):
device = next(self.parameters()).device
clip_inputs = self.processor(images=images, return_tensors="pt").to(device)
img_emb = self.clip.get_image_features(**clip_inputs)
text_inputs = self.tokenizer(
texts, padding=True, truncation=True, max_length=512, return_tensors="pt"
).to(device)
text_outputs = self.text_encoder(**text_inputs)
text_emb = self.average_pool(text_outputs.last_hidden_state, text_inputs['attention_mask'])
img_proj = self.proj_img(img_emb)
text_proj = self.proj_text(text_emb)
fused = torch.cat([text_proj, img_proj], dim=-1)
w = self.gate(fused)
fused_emb = w[:, 0:1] * text_proj + w[:, 1:2] * img_proj
return F.normalize(fused_emb, dim=1)
# Load model
model = FaceRecognizer()
# Download and load weights from HuggingFace
weights_path = hf_hub_download(repo_id="AvitoTech/SigLIP2-giant-e5small-v2-gating-for-animal-identification", filename="model.safetensors")
state_dict = load_file(weights_path)
model.load_state_dict(state_dict)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device).eval()
# Get fused embedding
image = Image.open("your_image.jpg").convert("RGB")
text = "orange cat"
with torch.no_grad():
embedding = model([image], [text])
print(f"Embedding shape: {embedding.shape}") # torch.Size([1, 512])
Citation
If you use this model in your research or applications, please cite our work:
BibTeX citation will be added upon paper publication.
Use Cases
- Individual pet identification and re-identification with multimodal queries
- Lost and found pet matching systems with text descriptions
- Veterinary record management with combined image and text search
- Animal behavior monitoring with contextual information
- Wildlife conservation and tracking with metadata integration
- Downloads last month
- 16