sd15-flow-matching / trainer_v2.py
AbstractPhil's picture
trainer to finish the next 10 epochs barring major errors
896c974 verified
raw
history blame
45.6 kB
# =====================================================================================
# SD1.5 Flow-Matching Trainer — David-Driven Adaptive Timestep Sampling
# Quartermaster: Mirel
# FIXED: David nested output handling + reliability filtering + clean checkpoint loading
# =====================================================================================
from __future__ import annotations
import os, json, math, random, re, shutil
from dataclasses import dataclass, asdict
from pathlib import Path
from typing import Dict, List, Tuple, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
# Diffusers
from diffusers import StableDiffusionPipeline, DDPMScheduler
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
# Repo deps
from geovocab2.train.model.core.geo_david_collective import GeoDavidCollective
from geovocab2.data.prompt.symbolic_tree import SynthesisSystem
# HF / safetensors
from huggingface_hub import snapshot_download, HfApi, create_repo, hf_hub_download
from safetensors.torch import load_file
# =====================================================================================
# 1) CONFIG
# =====================================================================================
@dataclass
class BaseConfig:
run_name: str = "sd15_flowmatch_david_weighted"
out_dir: str = "./runs/sd15_flowmatch_david_weighted"
ckpt_dir: str = "./checkpoints_sd15_flow_david_weighted"
save_every: int = 1
# Data
num_samples: int = 200_000
batch_size: int = 32
num_workers: int = 2
seed: int = 42
# Models / Blocks
model_id: str = "runwayml/stable-diffusion-v1-5"
active_blocks: Tuple[str, ...] = ("down_0","down_1","down_2","down_3","mid","up_0","up_1","up_2","up_3")
pooling: str = "mean"
# Flow training
epochs: int = 20
lr: float = 1e-4
weight_decay: float = 1e-3
grad_clip: float = 1.0
amp: bool = True
global_flow_weight: float = 1.0
block_penalty_weight: float = 0.2
use_local_flow_heads: bool = False
local_flow_weight: float = 1.0
# KD
use_kd: bool = True
kd_weight: float = 0.25
# David
david_repo_id: str = "AbstractPhil/geo-david-collective-sd15-base-e40"
david_cache_dir: str = "./_hf_david_cache"
david_state_key: Optional[str] = None
# Fusion
alpha_timestep: float = 0.5
beta_pattern: float = 0.25
delta_incoherence: float = 0.25
lambda_min: float = 0.5
lambda_max: float = 3.0
block_weights: Dict[str, float] = None
# Timestep Weighting (David-guided adaptive sampling)
use_timestep_weighting: bool = True
use_david_weights: bool = True
timestep_shift: float = 3.0 # SD3-style shift (higher = bias toward clean)
base_jitter: int = 5 # Base ±jitter around bin center
adaptive_chaos: bool = True # Scale jitter by pattern difficulty
profile_samples: int = 2500 # Samples to profile David's difficulty
reliability_threshold: float = 0.15 # Minimum accuracy to trust David's guidance
# Scheduler
num_train_timesteps: int = 1000
# Inference
sample_steps: int = 30
guidance_scale: float = 7.5
# HuggingFace
hf_repo_id: Optional[str] = "AbstractPhil/sd15-flow-matching"
upload_every_epoch: bool = True
continue_training: bool = True
def __post_init__(self):
Path(self.out_dir).mkdir(parents=True, exist_ok=True)
Path(self.ckpt_dir).mkdir(parents=True, exist_ok=True)
Path(self.david_cache_dir).mkdir(parents=True, exist_ok=True)
if self.block_weights is None:
self.block_weights = {'down_0':0.7,'down_1':0.9,'down_2':1.0,'down_3':1.1,'mid':1.2,'up_0':1.1,'up_1':1.0,'up_2':0.9,'up_3':0.7}
# =====================================================================================
# 2) DAVID-WEIGHTED TIMESTEP SAMPLER
# =====================================================================================
class DavidWeightedTimestepSampler:
"""
Samples timesteps weighted by David's inherent difficulty + SD3 shift + adaptive chaos.
FIXED: Properly handles nested GeoDavidCollective output structure.
FIXED: Filters out unreliable bins (accuracy < threshold).
"""
def __init__(self, num_timesteps=1000, num_bins=100, shift=3.0, base_jitter=5, adaptive_chaos=True, reliability_threshold=0.15):
self.num_timesteps = num_timesteps
self.num_bins = num_bins
self.shift = shift
self.base_jitter = base_jitter
self.adaptive_chaos = adaptive_chaos
self.reliability_threshold = reliability_threshold
self.difficulty_weights = None # Timestep difficulty
self.pattern_difficulty = None # Pattern confusion per bin
def _apply_shift(self, t: float) -> float:
"""Apply SD3-style timestep shift (operates on normalized t ∈ [0,1])."""
if self.shift <= 0:
return t
return self.shift * t / (1.0 + (self.shift - 1.0) * t)
def compute_difficulty_from_david(self, david, teacher, device, num_samples=500):
"""Profile David's confusion patterns to create difficulty map."""
print("🔍 Profiling David's timestep & pattern difficulty...")
david.eval()
teacher.eval()
# Track David's accuracy and pattern entropy per bin
correct_per_bin = torch.zeros(self.num_bins)
total_per_bin = torch.zeros(self.num_bins)
entropy_per_bin = torch.zeros(self.num_bins)
entropy_count_per_bin = torch.zeros(self.num_bins)
with torch.no_grad():
for _ in tqdm(range(num_samples // 32), desc="Profiling David", leave=False):
# Random latents and timesteps
x = torch.randn(32, 4, 64, 64, device=device, dtype=torch.float16)
t = torch.randint(0, self.num_timesteps, (32,), device=device)
t_bins = (t // 10)
# Dummy conditioning
ehs = torch.randn(32, 77, 768, device=device, dtype=torch.float16)
# Get teacher features
teacher.hooks.clear()
_ = teacher.unet(x, t, encoder_hidden_states=ehs)
feats = {k: v.float() for k, v in teacher.hooks.bank.items()}
# Pool features
pooled = {name: f.mean(dim=(2, 3)) for name, f in feats.items()}
# Get David's outputs (NESTED STRUCTURE!)
outputs = david(pooled, t.float())
# ================================================================
# FIXED: Aggregate across blocks
# ================================================================
# 1. Timestep difficulty (from classification error)
timestep_logits_list = []
for block_name, block_out in outputs.items():
if 'timestep_logits' in block_out:
timestep_logits_list.append(block_out['timestep_logits'])
if timestep_logits_list:
# Average predictions across blocks
ts_logits = torch.stack(timestep_logits_list).mean(0)
preds = ts_logits.argmax(dim=-1)
for pred, true_bin in zip(preds, t_bins):
bin_idx = true_bin.item()
correct_per_bin[bin_idx] += (pred == true_bin).float().item()
total_per_bin[bin_idx] += 1
# 2. Pattern difficulty (from entropy)
pattern_logits_list = []
for block_name, block_out in outputs.items():
if 'pattern_logits' in block_out:
pattern_logits_list.append(block_out['pattern_logits'])
if pattern_logits_list:
# Average predictions across blocks
pt_logits = torch.stack(pattern_logits_list).mean(0)
P = pt_logits.softmax(-1)
ent = -(P * P.clamp_min(1e-9).log()).sum(-1)
norm_ent = ent / math.log(P.shape[-1]) # Normalize by max entropy
for i, true_bin in enumerate(t_bins):
bin_idx = true_bin.item()
entropy_per_bin[bin_idx] += norm_ent[i].item()
entropy_count_per_bin[bin_idx] += 1
# Compute accuracy per bin
accuracy_per_bin = correct_per_bin / (total_per_bin.clamp(min=1))
# ========================================================================
# RELIABILITY FILTERING: Disable bins with accuracy < threshold
# ========================================================================
reliable_mask = accuracy_per_bin >= self.reliability_threshold
num_reliable = reliable_mask.sum().item()
num_disabled = self.num_bins - num_reliable
print(f"\n🎯 Reliability Analysis:")
print(f" Threshold: {self.reliability_threshold:.0%}")
print(f" Reliable bins: {num_reliable}/{self.num_bins}")
print(f" Disabled bins: {num_disabled}/{self.num_bins}")
if num_disabled > 0:
disabled_bins = torch.where(~reliable_mask)[0].tolist()
disabled_accs = [accuracy_per_bin[i].item() for i in disabled_bins]
print(f" Disabled: {disabled_bins[:10]}{'...' if len(disabled_bins) > 10 else ''}")
print(f" (accuracies: {[f'{a:.1%}' for a in disabled_accs[:10]]})")
# Create difficulty weights ONLY for reliable bins
if num_reliable == 0:
print("\n⚠️ WARNING: No reliable bins found! Falling back to uniform sampling.")
self.difficulty_weights = torch.ones(self.num_bins) / self.num_bins
self.pattern_difficulty = torch.ones(self.num_bins) * 0.5
return self.difficulty_weights
# Compute difficulty (inverse accuracy) for reliable bins
timestep_difficulty = torch.zeros(self.num_bins)
timestep_difficulty[reliable_mask] = (1.0 - accuracy_per_bin[reliable_mask]) + 0.1
# Zero out unreliable bins (won't be sampled)
timestep_difficulty[~reliable_mask] = 0.0
# Normalize weights over reliable bins only
self.difficulty_weights = timestep_difficulty / timestep_difficulty.sum()
# Compute pattern difficulty (average entropy per bin)
self.pattern_difficulty = entropy_per_bin / (entropy_count_per_bin.clamp(min=1))
self.pattern_difficulty = self.pattern_difficulty.clamp(min=0.1, max=1.0)
# Set entropy to 0.5 (neutral) for disabled bins
self.pattern_difficulty[~reliable_mask] = 0.5
# ========================================================================
# REPORT
# ========================================================================
print(f"\n✓ David difficulty map computed (filtered):")
print(f" Avg timestep accuracy (all bins): {accuracy_per_bin.mean():.2%}")
print(f" Avg timestep accuracy (reliable): {accuracy_per_bin[reliable_mask].mean():.2%}")
# Find hardest/easiest among reliable bins
reliable_indices = torch.where(reliable_mask)[0]
if len(reliable_indices) > 0:
hardest_idx = reliable_indices[accuracy_per_bin[reliable_mask].argmin()].item()
easiest_idx = reliable_indices[accuracy_per_bin[reliable_mask].argmax()].item()
print(f" Hardest reliable bin: {hardest_idx} ({accuracy_per_bin[hardest_idx]:.2%} acc)")
print(f" Easiest reliable bin: {easiest_idx} ({accuracy_per_bin[easiest_idx]:.2%} acc)")
print(f" Avg pattern entropy (reliable): {self.pattern_difficulty[reliable_mask].mean():.3f}")
# Show sampling distribution (top 10 weighted bins)
top_weights, top_bins = self.difficulty_weights.topk(10)
print(f"\n📊 Top 10 sampled bins (by difficulty weight):")
for i, (bin_idx, weight) in enumerate(zip(top_bins.tolist(), top_weights.tolist())):
acc = accuracy_per_bin[bin_idx].item()
print(f" {i+1}. Bin {bin_idx:2d}: weight={weight:.3f} (acc={acc:.1%})")
return self.difficulty_weights
def sample(self, batch_size: int) -> List[int]:
"""Sample timesteps with David weighting + shift + adaptive chaos."""
if self.difficulty_weights is None:
# Fallback to uniform
return [random.randint(0, self.num_timesteps - 1) for _ in range(batch_size)]
timesteps = []
for _ in range(batch_size):
# 1. Sample bin weighted by David's difficulty
bin_idx = torch.multinomial(self.difficulty_weights, 1).item()
# 2. Get bin center as normalized t
bin_center_raw = bin_idx * (self.num_timesteps // self.num_bins) + (self.num_timesteps // self.num_bins) // 2
t_normalized = bin_center_raw / self.num_timesteps
# 3. Apply SD3 shift
t_shifted = self._apply_shift(t_normalized)
# 4. Add adaptive chaos (jitter scaled by pattern difficulty)
if self.adaptive_chaos:
chaos_scale = self.pattern_difficulty[bin_idx].item()
jitter = int(self.base_jitter * (0.5 + chaos_scale)) # 0.5-1.5x base jitter
else:
jitter = self.base_jitter
# 5. Convert back to raw timestep with jitter
t_raw = int(t_shifted * self.num_timesteps)
t_raw += random.randint(-jitter, jitter)
t_raw = max(0, min(self.num_timesteps - 1, t_raw))
timesteps.append(t_raw)
return timesteps
# =====================================================================================
# 3) DATA
# =====================================================================================
class SymbolicPromptDataset(Dataset):
def __init__(self, n:int, seed:int=42, timestep_sampler=None):
self.n = n
self.timestep_sampler = timestep_sampler
random.seed(seed)
self.sys = SynthesisSystem(seed=seed)
def __len__(self): return self.n
def __getitem__(self, idx):
r = self.sys.synthesize(complexity=random.choice([1,2,3,4,5]))
prompt = r['text']
if self.timestep_sampler:
t = self.timestep_sampler.sample(1)[0]
else:
t = random.randint(0, 999)
return {"prompt": prompt, "t": t}
def collate(batch: List[dict]):
prompts = [b["prompt"] for b in batch]
t = torch.tensor([b["t"] for b in batch], dtype=torch.long)
t_bins = t // 10
return {"prompts": prompts, "t": t, "t_bins": t_bins}
# =====================================================================================
# 4) HOOKS + POOLING
# =====================================================================================
class HookBank:
def __init__(self, unet: UNet2DConditionModel, active: Tuple[str, ...]):
self.active = set(active)
self.bank: Dict[str, torch.Tensor] = {}
self.hooks: List[torch.utils.hooks.RemovableHandle] = []
self._register(unet)
def _register(self, unet: UNet2DConditionModel):
def mk(name):
def h(m, i, o):
out = o[0] if isinstance(o,(tuple,list)) else o
self.bank[name] = out
return h
for i, blk in enumerate(unet.down_blocks):
nm = f"down_{i}"
if nm in self.active: self.hooks.append(blk.register_forward_hook(mk(nm)))
if "mid" in self.active:
self.hooks.append(unet.mid_block.register_forward_hook(mk("mid")))
for i, blk in enumerate(unet.up_blocks):
nm = f"up_{i}"
if nm in self.active: self.hooks.append(blk.register_forward_hook(mk(nm)))
def clear(self): self.bank.clear()
def close(self):
for h in self.hooks: h.remove()
self.hooks.clear()
def spatial_pool(x: torch.Tensor, name: str, policy: str) -> torch.Tensor:
if policy == "mean": return x.mean(dim=(2,3))
if policy == "max": return x.amax(dim=(2,3))
if policy == "adaptive":
return x.mean(dim=(2,3)) if (name.startswith("down") or name=="mid") else x.amax(dim=(2,3))
raise ValueError(f"Unknown pooling: {policy}")
# =====================================================================================
# 5) TEACHER
# =====================================================================================
class SD15Teacher(nn.Module):
def __init__(self, cfg: BaseConfig, device: str):
super().__init__()
self.pipe = StableDiffusionPipeline.from_pretrained(cfg.model_id, torch_dtype=torch.float16, safety_checker=None).to(device)
self.unet: UNet2DConditionModel = self.pipe.unet
self.text_encoder = self.pipe.text_encoder
self.tokenizer = self.pipe.tokenizer
self.hooks = HookBank(self.unet, cfg.active_blocks)
self.sched = DDPMScheduler(num_train_timesteps=cfg.num_train_timesteps)
self.device = device
for p in self.parameters(): p.requires_grad_(False)
@torch.no_grad()
def encode(self, prompts: List[str]) -> torch.Tensor:
tok = self.tokenizer(prompts, padding="max_length", max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors="pt")
return self.text_encoder(tok.input_ids.to(self.device))[0]
@torch.no_grad()
def forward_eps_and_feats(self, x_t: torch.Tensor, t: torch.LongTensor, ehs: torch.Tensor):
self.hooks.clear()
eps_hat = self.unet(x_t, t, encoder_hidden_states=ehs).sample
feats = {k: v.detach().float() for k, v in self.hooks.bank.items()}
return eps_hat.float(), feats
def alpha_sigma(self, t: torch.LongTensor) -> Tuple[torch.Tensor, torch.Tensor]:
ac = self.sched.alphas_cumprod.to(self.device)[t]
alpha = ac.sqrt().view(-1,1,1,1).float()
sigma = (1.0 - ac).sqrt().view(-1,1,1,1).float()
return alpha, sigma
# =====================================================================================
# 6) STUDENT
# =====================================================================================
class StudentUNet(nn.Module):
def __init__(self, teacher_unet: UNet2DConditionModel, active_blocks: Tuple[str,...], use_local_heads: bool):
super().__init__()
self.unet = UNet2DConditionModel.from_config(teacher_unet.config)
self.unet.load_state_dict(teacher_unet.state_dict(), strict=True)
self.hooks = HookBank(self.unet, active_blocks)
self.use_local_heads = use_local_heads
self.local_heads = nn.ModuleDict()
def _ensure_heads(self, feats: Dict[str, torch.Tensor]):
if not self.use_local_heads: return
if len(self.local_heads) == len(feats): return
target_dtype = next(self.unet.parameters()).dtype
for name, f in feats.items():
c = f.shape[1]
if name not in self.local_heads:
head = nn.Conv2d(c, 4, kernel_size=1)
head = head.to(dtype=target_dtype, device=f.device)
self.local_heads[name] = head
def forward(self, x_t: torch.Tensor, t: torch.LongTensor, ehs: torch.Tensor):
self.hooks.clear()
v_hat = self.unet(x_t, t, encoder_hidden_states=ehs).sample
feats = {k: v for k, v in self.hooks.bank.items()}
self._ensure_heads(feats)
return v_hat, feats
# =====================================================================================
# 7) DAVID + ASSESSOR + FUSION
# =====================================================================================
class DavidLoader:
def __init__(self, cfg: BaseConfig, device: str):
self.cfg = cfg
self.device = device
self.repo_dir = snapshot_download(repo_id=cfg.david_repo_id, local_dir=cfg.david_cache_dir, local_dir_use_symlinks=False)
self.config_path = os.path.join(self.repo_dir, "config.json")
self.weights_path = os.path.join(self.repo_dir, "model.safetensors")
with open(self.config_path, "r") as f:
self.hf_config = json.load(f)
self.gdc = GeoDavidCollective(
block_configs=self.hf_config["block_configs"],
num_timestep_bins=int(self.hf_config["num_timestep_bins"]),
num_patterns_per_bin=int(self.hf_config["num_patterns_per_bin"]),
block_weights=self.hf_config.get("block_weights", {k:1.0 for k in self.hf_config["block_configs"].keys()}),
loss_config=self.hf_config.get("loss_config", {})
).to(device).eval()
state = load_file(self.weights_path)
self.gdc.load_state_dict(state, strict=False)
for p in self.gdc.parameters(): p.requires_grad_(False)
print(f"✓ David loaded from HF: {self.repo_dir}")
print(f" blocks={len(self.hf_config['block_configs'])} bins={self.hf_config['num_timestep_bins']} patterns={self.hf_config['num_patterns_per_bin']}")
if "block_weights" in self.hf_config:
cfg.block_weights = self.hf_config["block_weights"]
class DavidAssessor(nn.Module):
"""
CORRECTED: Properly handles GeoDavidCollective's nested multi-block output structure.
GeoDavidCollective returns: Dict[block_name, Dict[str, Tensor]]
Not a flat Dict[str, Tensor]!
"""
def __init__(self, gdc: GeoDavidCollective, pooling: str):
super().__init__()
self.gdc = gdc
self.pooling = pooling
def _pool(self, feats: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
return {k: spatial_pool(v, k, self.pooling) for k, v in feats.items()}
@torch.no_grad()
def forward(self, feats_student: Dict[str, torch.Tensor], t: torch.LongTensor
) -> Tuple[Dict[str,float], Dict[str,float], Dict[str,float]]:
"""
Assess student features using David's geometric knowledge.
Returns:
e_t: Dict[block_name, timestep_error] - classification error per block
e_p: Dict[block_name, pattern_entropy] - normalized entropy per block
coh: Dict[block_name, coherence] - geometric coherence per block
"""
# Pool spatial features
Zs = self._pool(feats_student)
# Forward through GeoDavidCollective
# Returns: Dict[block_name, Dict[str, Tensor]]
outs = self.gdc(Zs, t.float())
# Initialize output dicts
e_t, e_p, coh = {}, {}, {}
# Compute timestep bins for targets
t_bins = (t // 10).to(next(self.gdc.parameters()).device)
# ====================================================================
# TIMESTEP ERROR - Per-block
# ====================================================================
for block_name, block_out in outs.items():
if 'timestep_logits' in block_out:
ts_logits = block_out['timestep_logits']
ce = F.cross_entropy(ts_logits, t_bins, reduction="mean")
e_t[block_name] = float(ce.item())
# If no timestep predictions, set all errors to 0
if not e_t:
for name in Zs.keys():
e_t[name] = 0.0
# ====================================================================
# PATTERN ENTROPY - Per-block
# ====================================================================
for block_name, block_out in outs.items():
if 'pattern_logits' in block_out:
pt_logits = block_out['pattern_logits']
# Compute normalized entropy
P = pt_logits.softmax(-1)
ent = -(P * (P.clamp_min(1e-9)).log()).sum(-1).mean()
norm_ent = ent / math.log(P.shape[-1]) # Normalize by max entropy
e_p[block_name] = float(norm_ent.item())
# If no pattern predictions, set all entropies to 0
if not e_p:
for name in Zs.keys():
e_p[name] = 0.0
# ====================================================================
# COHERENCE (from Cantor alphas)
# ====================================================================
try:
alphas = self.gdc.get_cantor_alphas()
# Alphas should be close to 0.5 for good coherence
# Map to coherence: 1.0 = perfect (alpha=0.5), lower = worse
for name, alpha in alphas.items():
# Coherence = 1 - 2*|alpha - 0.5|
# When alpha=0.5: coherence=1.0
# When alpha=0 or 1: coherence=0.0
coherence = 1.0 - 2.0 * abs(alpha - 0.5)
coh[name] = max(0.0, min(1.0, coherence))
except Exception:
# Fallback: assume perfect coherence
for name in Zs.keys():
coh[name] = 1.0
# Ensure all input blocks have values (fill missing with block averages)
for name in Zs.keys():
if name not in e_t:
# Use average of available blocks
e_t[name] = sum(e_t.values()) / max(len(e_t), 1) if e_t else 0.0
if name not in e_p:
e_p[name] = sum(e_p.values()) / max(len(e_p), 1) if e_p else 0.0
if name not in coh:
coh[name] = sum(coh.values()) / max(len(coh), 1) if coh else 1.0
return e_t, e_p, coh
class BlockPenaltyFusion:
def __init__(self, cfg: BaseConfig): self.cfg = cfg
def lambdas(self, e_t:Dict[str,float], e_p:Dict[str,float], coh:Dict[str,float]) -> Dict[str,float]:
lam = {}
for name, base in self.cfg.block_weights.items():
val = base * (1.0
+ self.cfg.alpha_timestep * float(e_t.get(name,0.0))
+ self.cfg.beta_pattern * float(e_p.get(name,0.0))
+ self.cfg.delta_incoherence * (1.0 - float(coh.get(name,1.0))))
lam[name] = float(max(self.cfg.lambda_min, min(self.cfg.lambda_max, val)))
return lam
# =====================================================================================
# 8) TRAINER
# =====================================================================================
class FlowMatchDavidTrainer:
def __init__(self, cfg: BaseConfig, device: str = "cuda"):
self.cfg = cfg
self.device = device
self.start_epoch = 0
self.start_gstep = 0
# Initialize David first (needed for timestep sampler)
self.david_loader = DavidLoader(cfg, device)
self.david = self.david_loader.gdc
self.assessor = DavidAssessor(self.david, cfg.pooling)
self.fusion = BlockPenaltyFusion(cfg)
# Initialize teacher (needed for David profiling)
self.teacher = SD15Teacher(cfg, device).eval()
# Initialize timestep sampler
self.timestep_sampler = None
if cfg.use_timestep_weighting:
print("\n" + "="*70)
print("🎯 ADAPTIVE TIMESTEP SAMPLING ENABLED")
print(f" David weighting: {cfg.use_david_weights}")
print(f" SD3 shift: {cfg.timestep_shift}")
print(f" Base jitter: ±{cfg.base_jitter}")
print(f" Adaptive chaos: {cfg.adaptive_chaos}")
print(f" Reliability threshold: {cfg.reliability_threshold:.0%}")
self.timestep_sampler = DavidWeightedTimestepSampler(
num_timesteps=cfg.num_train_timesteps,
num_bins=100,
shift=cfg.timestep_shift if cfg.use_david_weights else 0.0,
base_jitter=cfg.base_jitter,
adaptive_chaos=cfg.adaptive_chaos,
reliability_threshold=cfg.reliability_threshold
)
if cfg.use_david_weights:
self.timestep_sampler.compute_difficulty_from_david(
david=self.david,
teacher=self.teacher,
device=device,
num_samples=cfg.profile_samples
)
print("="*70 + "\n")
# Initialize dataset with sampler
self.dataset = SymbolicPromptDataset(cfg.num_samples, cfg.seed, self.timestep_sampler)
self.loader = DataLoader(self.dataset, batch_size=cfg.batch_size, shuffle=True,
num_workers=cfg.num_workers, pin_memory=True, collate_fn=collate)
# Initialize student
self.student = StudentUNet(self.teacher.unet, cfg.active_blocks, cfg.use_local_flow_heads).to(device)
self.opt = torch.optim.AdamW(self.student.parameters(), lr=cfg.lr, weight_decay=cfg.weight_decay)
self.sched = torch.optim.lr_scheduler.CosineAnnealingLR(self.opt, T_max=cfg.epochs * len(self.loader))
self.scaler = torch.cuda.amp.GradScaler(enabled=cfg.amp)
# Load latest checkpoint from HuggingFace if continuing training
if cfg.continue_training:
self._load_latest_from_hf()
self.writer = SummaryWriter(log_dir=os.path.join(cfg.out_dir, cfg.run_name))
def _load_latest_from_hf(self):
"""Load the most recent checkpoint from HuggingFace repo."""
if not self.cfg.hf_repo_id:
print("ℹ️ No HuggingFace repo specified, starting from scratch\n")
return
try:
api = HfApi()
print(f"\n🔍 Searching for latest checkpoint in {self.cfg.hf_repo_id}...")
# List all files in the repo
files = api.list_repo_files(repo_id=self.cfg.hf_repo_id, repo_type="model")
# Find all epoch checkpoints (format: {run_name}_e{epoch}.pt)
epochs = []
for f in files:
if f.endswith('.pt') and 'final' not in f.lower():
match = re.search(r'_e(\d+)\.pt$', f)
if match:
epoch_num = int(match.group(1))
epochs.append((epoch_num, f))
if not epochs:
print("ℹ️ No previous checkpoints found, starting from scratch\n")
return
# Get the latest epoch
latest_epoch, latest_file = max(epochs, key=lambda x: x[0])
print(f"📥 Found latest checkpoint: {latest_file} (epoch {latest_epoch})")
# Download checkpoint
local_path = hf_hub_download(
repo_id=self.cfg.hf_repo_id,
filename=latest_file,
repo_type="model",
cache_dir=self.cfg.ckpt_dir
)
# Load checkpoint
print(f"📦 Loading checkpoint...")
checkpoint = torch.load(local_path, map_location='cpu')
# Load student state dict
if 'student' in checkpoint:
missing, unexpected = self.student.load_state_dict(checkpoint['student'], strict=False)
if missing:
print(f" ⚠️ Missing keys: {len(missing)}")
if unexpected:
print(f" ⚠️ Unexpected keys: {len(unexpected)}")
print(f" ✓ Loaded student model")
else:
print(f" ⚠️ Warning: 'student' key not found in checkpoint")
return
# Load optimizer state
if 'opt' in checkpoint:
try:
self.opt.load_state_dict(checkpoint['opt'])
print(" ✓ Loaded optimizer state")
except Exception as e:
print(f" ⚠️ Failed to load optimizer state: {e}")
# Load scheduler state
if 'sched' in checkpoint:
try:
self.sched.load_state_dict(checkpoint['sched'])
print(" ✓ Loaded scheduler state")
except Exception as e:
print(f" ⚠️ Failed to load scheduler state: {e}")
# Set starting epoch and global step
if 'gstep' in checkpoint:
self.start_gstep = checkpoint['gstep']
self.start_epoch = latest_epoch
print(f" ✓ Resuming from epoch {self.start_epoch + 1}, global step {self.start_gstep}")
else:
# Fallback: estimate from epoch number
self.start_epoch = latest_epoch
self.start_gstep = latest_epoch * len(self.loader)
print(f" ✓ Resuming from epoch {self.start_epoch + 1} (estimated step {self.start_gstep})")
# Cleanup
del checkpoint
torch.cuda.empty_cache()
print(f"✅ Successfully resumed from checkpoint!\n")
except Exception as e:
print(f"⚠️ Failed to load checkpoint: {e}")
print(" Starting training from scratch...\n")
def _v_star(self, x_t, t, eps_hat):
alpha, sigma = self.teacher.alpha_sigma(t)
x0_hat = (x_t - sigma * eps_hat) / (alpha + 1e-8)
return alpha * eps_hat - sigma * x0_hat
def _down_like(self, tgt: torch.Tensor, ref: torch.Tensor) -> torch.Tensor:
return F.interpolate(tgt, size=ref.shape[-2:], mode="bilinear", align_corners=False)
def _kd_cos(self, s: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
s = F.normalize(s, dim=-1); t = F.normalize(t, dim=-1)
return 1.0 - (s*t).sum(-1).mean()
def train(self):
cfg = self.cfg
gstep = self.start_gstep
# Test prompts for monitoring progress
test_prompts = [
"a castle at sunset",
"a mountain landscape with trees",
"a city street at night"
]
for ep in range(self.start_epoch, cfg.epochs):
# Sample before epoch to monitor progress
if ep > 0 or self.start_epoch > 0: # Skip first ever epoch
print(f"\n🎨 Sampling test images before epoch {ep+1}...")
try:
test_imgs = self.sample(test_prompts, steps=30, guidance=7.5)
# Save individual images
sample_dir = Path(cfg.out_dir) / "samples"
sample_dir.mkdir(exist_ok=True, parents=True)
for i, (img, prompt) in enumerate(zip(test_imgs, test_prompts)):
# Convert to PIL
img_np = ((img.cpu().permute(1,2,0).numpy() + 1) / 2 * 255).astype('uint8')
from PIL import Image
pil_img = Image.fromarray(img_np)
# Save with epoch number
safe_prompt = prompt.replace(" ", "_")[:30]
img_path = sample_dir / f"e{ep}_p{i}_{safe_prompt}.png"
pil_img.save(img_path)
# Log to tensorboard
self.writer.add_image(f"samples/{safe_prompt}",
(img + 1) / 2, # Normalize to [0,1]
global_step=ep)
print(f"✓ Saved {len(test_imgs)} test images to {sample_dir}")
except Exception as e:
print(f"⚠️ Sampling failed: {e}")
self.student.train()
pbar = tqdm(self.loader, desc=f"Epoch {ep+1}/{cfg.epochs}",
dynamic_ncols=True, leave=True, position=0)
acc = {"L":0.0, "Lf":0.0, "Lb":0.0}
for it, batch in enumerate(pbar):
prompts = batch["prompts"]
t = batch["t"].to(self.device)
with torch.no_grad():
ehs = self.teacher.encode(prompts)
x_t = torch.randn(len(prompts), 4, 64, 64, device=self.device, dtype=torch.float16)
with torch.no_grad():
eps_hat, t_feats_spatial = self.teacher.forward_eps_and_feats(x_t.half(), t, ehs)
v_star = self._v_star(x_t, t, eps_hat)
with torch.cuda.amp.autocast(enabled=cfg.amp):
v_hat, s_feats_spatial = self.student(x_t, t, ehs)
L_flow = F.mse_loss(v_hat, v_star)
e_t, e_p, coh = self.assessor(s_feats_spatial, t)
lam = self.fusion.lambdas(e_t, e_p, coh)
L_blocks = torch.zeros((), device=self.device)
for name, s_feat in s_feats_spatial.items():
L_kd = torch.zeros((), device=self.device)
if cfg.use_kd:
s_pool = spatial_pool(s_feat, name, cfg.pooling)
t_pool = spatial_pool(t_feats_spatial[name], name, cfg.pooling)
L_kd = self._kd_cos(s_pool, t_pool)
L_lf = torch.zeros((), device=self.device)
if cfg.use_local_flow_heads and name in self.student.local_heads:
v_loc = self.student.local_heads[name](s_feat)
v_ds = self._down_like(v_star, v_loc)
L_lf = F.mse_loss(v_loc, v_ds)
L_blocks = L_blocks + lam.get(name,1.0) * (cfg.kd_weight * L_kd + cfg.local_flow_weight * L_lf)
L_total = cfg.global_flow_weight*L_flow + cfg.block_penalty_weight*L_blocks
self.opt.zero_grad(set_to_none=True)
if cfg.amp:
self.scaler.scale(L_total).backward()
nn.utils.clip_grad_norm_(self.student.parameters(), cfg.grad_clip)
self.scaler.step(self.opt); self.scaler.update()
else:
L_total.backward()
nn.utils.clip_grad_norm_(self.student.parameters(), cfg.grad_clip)
self.opt.step()
self.sched.step(); gstep += 1
acc["L"] += float(L_total.item())
acc["Lf"] += float(L_flow.item())
acc["Lb"] += float(L_blocks.item())
if it % 50 == 0:
self.writer.add_scalar("train/total", float(L_total.item()), gstep)
self.writer.add_scalar("train/flow", float(L_flow.item()), gstep)
self.writer.add_scalar("train/blocks",float(L_blocks.item()), gstep)
for k in list(lam.keys())[:4]:
self.writer.add_scalar(f"lambda/{k}", lam[k], gstep)
if it % 10 == 0 or it == len(self.loader) - 1:
pbar.set_postfix({
"L": f"{float(L_total.item()):.4f}",
"Lf": f"{float(L_flow.item()):.4f}",
"Lb": f"{float(L_blocks.item()):.4f}"
}, refresh=False)
del x_t, eps_hat, v_star, v_hat, s_feats_spatial, t_feats_spatial
pbar.close()
n = len(self.loader)
print(f"\n[Epoch {ep+1}] L={acc['L']/n:.4f} | L_flow={acc['Lf']/n:.4f} | L_blocks={acc['Lb']/n:.4f}")
self.writer.add_scalar("epoch/total", acc['L']/n, ep+1)
self.writer.add_scalar("epoch/flow", acc['Lf']/n, ep+1)
self.writer.add_scalar("epoch/blocks",acc['Lb']/n, ep+1)
if (ep+1) % cfg.save_every == 0:
self._save(ep+1, gstep)
self._save("final", gstep)
# Final comprehensive sampling
print("\n🎨 Generating final test samples...")
final_prompts = [
"a castle at sunset",
"a mountain landscape with trees",
"a city street at night",
"a portrait of a person",
"abstract geometric shapes"
]
try:
final_imgs = self.sample(final_prompts, steps=30, guidance=7.5)
sample_dir = Path(cfg.out_dir) / "samples"
sample_dir.mkdir(exist_ok=True, parents=True)
for i, (img, prompt) in enumerate(zip(final_imgs, final_prompts)):
from PIL import Image
img_np = ((img.cpu().permute(1,2,0).numpy() + 1) / 2 * 255).astype('uint8')
pil_img = Image.fromarray(img_np)
safe_prompt = prompt.replace(" ", "_")[:30]
pil_img.save(sample_dir / f"final_{safe_prompt}.png")
print(f"✓ Saved {len(final_imgs)} final images to {sample_dir}")
except Exception as e:
print(f"⚠️ Final sampling failed: {e}")
self.writer.close()
def _save(self, tag, gstep):
"""Save checkpoint and upload to HuggingFace."""
pt_path = Path(self.cfg.ckpt_dir) / f"{self.cfg.run_name}_e{tag}.pt"
torch.save({
"cfg": asdict(self.cfg),
"student": self.student.state_dict(),
"opt": self.opt.state_dict(),
"sched": self.sched.state_dict(),
"gstep": gstep
}, pt_path)
size_mb = pt_path.stat().st_size / 1e6
print(f"✓ Saved checkpoint: {pt_path.name} ({size_mb:.1f} MB)")
if self.cfg.upload_every_epoch and self.cfg.hf_repo_id:
self._upload_to_hf(pt_path, tag)
def _upload_to_hf(self, path: Path, tag):
"""Upload checkpoint to HuggingFace."""
try:
api = HfApi()
create_repo(self.cfg.hf_repo_id, exist_ok=True, private=False, repo_type="model")
print(f"📤 Uploading {path.name} to {self.cfg.hf_repo_id}...")
api.upload_file(
path_or_fileobj=str(path),
path_in_repo=path.name,
repo_id=self.cfg.hf_repo_id,
repo_type="model",
commit_message=f"Epoch {tag}"
)
print(f"✅ Uploaded: https://huggingface.co/{self.cfg.hf_repo_id}/{path.name}")
except Exception as e:
print(f"⚠️ Upload failed: {e}")
@torch.no_grad()
def sample(self, prompts: List[str], steps: Optional[int]=None, guidance: Optional[float]=None) -> torch.Tensor:
steps = steps or self.cfg.sample_steps
guidance = guidance if guidance is not None else self.cfg.guidance_scale
# Ensure student is in eval mode
was_training = self.student.training
self.student.eval()
# Use autocast to handle dtype conversions automatically
with torch.cuda.amp.autocast(enabled=self.cfg.amp):
cond_e = self.teacher.encode(prompts)
uncond_e = self.teacher.encode([""]*len(prompts))
sched = self.teacher.sched
sched.set_timesteps(steps, device=self.device)
# Create latents (autocast will handle dtype)
x_t = torch.randn(len(prompts), 4, 64, 64, device=self.device)
for t_scalar in sched.timesteps:
t = torch.full((x_t.shape[0],), t_scalar, device=self.device, dtype=torch.long)
v_u, _ = self.student(x_t, t, uncond_e)
v_c, _ = self.student(x_t, t, cond_e)
v_hat = v_u + guidance*(v_c - v_u)
alpha, sigma = self.teacher.alpha_sigma(t)
denom = (alpha**2 + sigma**2)
x0_hat = (alpha * x_t - sigma * v_hat) / (denom + 1e-8)
eps_hat = (x_t - alpha * x0_hat) / (sigma + 1e-8)
step = sched.step(model_output=eps_hat, timestep=t_scalar, sample=x_t)
x_t = step.prev_sample
# Decode (keep x_t at current dtype for VAE)
imgs = self.teacher.pipe.vae.decode(x_t / 0.18215).sample
# Restore training mode
if was_training:
self.student.train()
return imgs.clamp(-1,1)
# =====================================================================================
# 9) MAIN
# =====================================================================================
def main():
cfg = BaseConfig()
print(json.dumps(asdict(cfg), indent=2))
device = "cuda" if torch.cuda.is_available() else "cpu"
if device != "cuda":
print("⚠️ A100 strongly recommended.")
trainer = FlowMatchDavidTrainer(cfg, device=device)
trainer.train()
_ = trainer.sample(["a castle at sunset"], steps=10, guidance=7.0)
print("✓ Training complete.")
if __name__ == "__main__":
main()