Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- bpe_simple_vocab_16e6.txt.gz +3 -0
- fig_accuracy_latency.png +3 -0
- run_axmodel.py +101 -0
- tokenizer.py +621 -0
- zebra.jpg +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
fig_accuracy_latency.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
zebra.jpg filter=lfs diff=lfs merge=lfs -text
|
bpe_simple_vocab_16e6.txt.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
| 3 |
+
size 1356917
|
fig_accuracy_latency.png
ADDED
|
Git LFS Details
|
run_axmodel.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import axengine as ort
|
| 4 |
+
import torch
|
| 5 |
+
from torchvision.transforms import Normalize, Compose, InterpolationMode, ToTensor, Resize, CenterCrop
|
| 6 |
+
from tokenizer import SimpleTokenizer
|
| 7 |
+
import argparse
|
| 8 |
+
|
| 9 |
+
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
| 10 |
+
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def image_transform_v2():
|
| 14 |
+
resolution = 256
|
| 15 |
+
resize_size = resolution
|
| 16 |
+
centercrop_size = resolution
|
| 17 |
+
mean = OPENAI_DATASET_MEAN
|
| 18 |
+
std = OPENAI_DATASET_STD
|
| 19 |
+
aug_list = [
|
| 20 |
+
Resize(
|
| 21 |
+
resize_size,
|
| 22 |
+
interpolation=InterpolationMode.BICUBIC,
|
| 23 |
+
),
|
| 24 |
+
CenterCrop(centercrop_size),
|
| 25 |
+
ToTensor(),
|
| 26 |
+
Normalize(mean=mean, std=std)
|
| 27 |
+
]
|
| 28 |
+
preprocess = Compose(aug_list)
|
| 29 |
+
return preprocess
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def image_transform_v1():
|
| 33 |
+
resolution = 256
|
| 34 |
+
resize_size = resolution
|
| 35 |
+
centercrop_size = resolution
|
| 36 |
+
aug_list = [
|
| 37 |
+
Resize(
|
| 38 |
+
resize_size,
|
| 39 |
+
interpolation=InterpolationMode.BILINEAR,
|
| 40 |
+
),
|
| 41 |
+
CenterCrop(centercrop_size),
|
| 42 |
+
ToTensor(),
|
| 43 |
+
]
|
| 44 |
+
preprocess = Compose(aug_list)
|
| 45 |
+
return preprocess
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def softmax(x, axis=-1):
|
| 49 |
+
"""
|
| 50 |
+
对 numpy 数组在指定维度上应用 softmax 函数
|
| 51 |
+
|
| 52 |
+
参数:
|
| 53 |
+
x: numpy 数组,输入数据
|
| 54 |
+
axis: 计算 softmax 的维度,默认为最后一个维度 (-1)
|
| 55 |
+
|
| 56 |
+
返回:
|
| 57 |
+
经过 softmax 处理的 numpy 数组,与输入形状相同
|
| 58 |
+
"""
|
| 59 |
+
# 减去最大值以防止数值溢出(数值稳定化)
|
| 60 |
+
e_x = np.exp(x - np.max(x, axis=axis, keepdims=True))
|
| 61 |
+
# 计算每个元素的指数与所在维度总和的比值
|
| 62 |
+
return e_x / np.sum(e_x, axis=axis, keepdims=True)
|
| 63 |
+
|
| 64 |
+
if __name__ == "__main__":
|
| 65 |
+
parser = argparse.ArgumentParser()
|
| 66 |
+
parser.add_argument("-ie", "--image_encoder_path", type=str, default="./mobileclip2_s4_image_encoder.axmodel",
|
| 67 |
+
help="image encoder axmodel path")
|
| 68 |
+
parser.add_argument("-te", "--text_encoder_path", type=str, default="./mobileclip2_s4_text_encoder.axmodel",
|
| 69 |
+
help="text encoder axmodel path")
|
| 70 |
+
parser.add_argument("-i", "--image", type=str, default="./zebra.jpg",
|
| 71 |
+
help="input image path")
|
| 72 |
+
parser.add_argument("-t", "--class_text", type=str, nargs='+', default=["a zebra", "a dog", "two zebras"],
|
| 73 |
+
help='List of captions, e.g.: "a zebra" "a dog" "two zebras"')
|
| 74 |
+
args = parser.parse_args()
|
| 75 |
+
|
| 76 |
+
image_encoder_path = args.image_encoder_path
|
| 77 |
+
text_encoder_path = args.text_encoder_path
|
| 78 |
+
# NOTICE: 使用v1的预处理,v2的预处理方式在pulsar2中量化误差比较大
|
| 79 |
+
preprocess = image_transform_v1()
|
| 80 |
+
tokenizer = SimpleTokenizer(context_length=77)
|
| 81 |
+
|
| 82 |
+
image = preprocess(Image.open(args.image).convert('RGB')).unsqueeze(0)
|
| 83 |
+
text = tokenizer(args.class_text)
|
| 84 |
+
text = text.to(torch.int32)
|
| 85 |
+
|
| 86 |
+
onnx_image_encoder = ort.InferenceSession(image_encoder_path)
|
| 87 |
+
onnx_text_encoder = ort.InferenceSession(text_encoder_path)
|
| 88 |
+
|
| 89 |
+
image_features = onnx_image_encoder.run(["unnorm_image_features"],{"image":np.array(image)})[0]
|
| 90 |
+
# text_features = []
|
| 91 |
+
# for i in range(text.shape[0]):
|
| 92 |
+
# text_feature = onnx_text_encoder.run(["unnorm_text_features"],{"text":np.array([text[i]])})[0]
|
| 93 |
+
# text_features.append(text_feature)
|
| 94 |
+
# text_features = np.array([t[0] for t in text_features])
|
| 95 |
+
text_features = onnx_text_encoder.run(["unnorm_text_features"], {"text": text.numpy()})[0]
|
| 96 |
+
image_features /= np.linalg.norm(image_features, ord=2, axis=-1, keepdims=True)
|
| 97 |
+
text_features /= np.linalg.norm(text_features, ord=2, axis=-1, keepdims=True)
|
| 98 |
+
|
| 99 |
+
text_probs = softmax(100.0 * image_features @ text_features.T)
|
| 100 |
+
|
| 101 |
+
print("Label probs:", text_probs)
|
tokenizer.py
ADDED
|
@@ -0,0 +1,621 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" CLIP tokenizer
|
| 2 |
+
|
| 3 |
+
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
| 4 |
+
"""
|
| 5 |
+
import gzip
|
| 6 |
+
import html
|
| 7 |
+
import os
|
| 8 |
+
import random
|
| 9 |
+
import string
|
| 10 |
+
from functools import lru_cache, partial
|
| 11 |
+
from typing import Callable, List, Optional, Union, Dict
|
| 12 |
+
import warnings
|
| 13 |
+
|
| 14 |
+
import ftfy
|
| 15 |
+
import numpy as np
|
| 16 |
+
import regex as re
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
# https://stackoverflow.com/q/62691279
|
| 20 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 21 |
+
_nltk_init = False
|
| 22 |
+
|
| 23 |
+
DEFAULT_CONTEXT_LENGTH = 77 # default context length for OpenAI CLIP
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@lru_cache()
|
| 27 |
+
def default_bpe():
|
| 28 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@lru_cache()
|
| 32 |
+
def bytes_to_unicode():
|
| 33 |
+
"""
|
| 34 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
| 35 |
+
The reversible bpe codes work on unicode strings.
|
| 36 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
| 37 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
| 38 |
+
This is a significant percentage of your normal, say, 32K bpe vocab.
|
| 39 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
| 40 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
| 41 |
+
"""
|
| 42 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
| 43 |
+
cs = bs[:]
|
| 44 |
+
n = 0
|
| 45 |
+
for b in range(2**8):
|
| 46 |
+
if b not in bs:
|
| 47 |
+
bs.append(b)
|
| 48 |
+
cs.append(2**8+n)
|
| 49 |
+
n += 1
|
| 50 |
+
cs = [chr(n) for n in cs]
|
| 51 |
+
return dict(zip(bs, cs))
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def get_pairs(word):
|
| 55 |
+
"""Return set of symbol pairs in a word.
|
| 56 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
| 57 |
+
"""
|
| 58 |
+
pairs = set()
|
| 59 |
+
prev_char = word[0]
|
| 60 |
+
for char in word[1:]:
|
| 61 |
+
pairs.add((prev_char, char))
|
| 62 |
+
prev_char = char
|
| 63 |
+
return pairs
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def basic_clean(text):
|
| 67 |
+
text = ftfy.fix_text(text)
|
| 68 |
+
text = html.unescape(html.unescape(text))
|
| 69 |
+
return text.strip()
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def whitespace_clean(text):
|
| 73 |
+
text = " ".join(text.split())
|
| 74 |
+
text = text.strip()
|
| 75 |
+
return text
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def _clean_canonicalize(x):
|
| 79 |
+
# basic, remove whitespace, remove punctuation, lower case
|
| 80 |
+
return canonicalize_text(basic_clean(x))
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def _clean_lower(x):
|
| 84 |
+
# basic, remove whitespace, lower case
|
| 85 |
+
return whitespace_clean(basic_clean(x)).lower()
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def _clean_whitespace(x):
|
| 89 |
+
# basic, remove whitespace
|
| 90 |
+
return whitespace_clean(basic_clean(x))
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def get_clean_fn(type: str):
|
| 94 |
+
if type == 'canonicalize':
|
| 95 |
+
return _clean_canonicalize
|
| 96 |
+
elif type == 'lower':
|
| 97 |
+
return _clean_lower
|
| 98 |
+
elif type == 'whitespace':
|
| 99 |
+
return _clean_whitespace
|
| 100 |
+
else:
|
| 101 |
+
assert False, f"Invalid clean function ({type})."
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def canonicalize_text(
|
| 105 |
+
text,
|
| 106 |
+
*,
|
| 107 |
+
keep_punctuation_exact_string=None,
|
| 108 |
+
trans_punctuation: dict = str.maketrans("", "", string.punctuation),
|
| 109 |
+
):
|
| 110 |
+
"""Returns canonicalized `text` (lowercase and punctuation removed).
|
| 111 |
+
|
| 112 |
+
From: https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
|
| 113 |
+
|
| 114 |
+
Args:
|
| 115 |
+
text: string to be canonicalized.
|
| 116 |
+
keep_punctuation_exact_string: If provided, then this exact string kept.
|
| 117 |
+
For example providing '{}' will keep any occurrences of '{}' (but will
|
| 118 |
+
still remove '{' and '}' that appear separately).
|
| 119 |
+
"""
|
| 120 |
+
text = text.replace("_", " ")
|
| 121 |
+
if keep_punctuation_exact_string:
|
| 122 |
+
text = keep_punctuation_exact_string.join(
|
| 123 |
+
part.translate(trans_punctuation)
|
| 124 |
+
for part in text.split(keep_punctuation_exact_string)
|
| 125 |
+
)
|
| 126 |
+
else:
|
| 127 |
+
text = text.translate(trans_punctuation)
|
| 128 |
+
text = text.lower()
|
| 129 |
+
text = " ".join(text.split())
|
| 130 |
+
return text.strip()
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class SimpleTokenizer(object):
|
| 134 |
+
def __init__(
|
| 135 |
+
self,
|
| 136 |
+
bpe_path: str = default_bpe(),
|
| 137 |
+
additional_special_tokens: Optional[List[str]] = None,
|
| 138 |
+
context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH,
|
| 139 |
+
clean: str = 'lower',
|
| 140 |
+
reduction_mask: str = ''
|
| 141 |
+
):
|
| 142 |
+
self.byte_encoder = bytes_to_unicode()
|
| 143 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 144 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
| 145 |
+
merges = merges[1:49152-256-2+1]
|
| 146 |
+
merges = [tuple(merge.split()) for merge in merges]
|
| 147 |
+
vocab = list(bytes_to_unicode().values())
|
| 148 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
| 149 |
+
for merge in merges:
|
| 150 |
+
vocab.append(''.join(merge))
|
| 151 |
+
special_tokens = ['<start_of_text>', '<end_of_text>']
|
| 152 |
+
if additional_special_tokens:
|
| 153 |
+
special_tokens += additional_special_tokens
|
| 154 |
+
vocab.extend(special_tokens)
|
| 155 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
| 156 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 157 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
| 158 |
+
self.cache = {t:t for t in special_tokens}
|
| 159 |
+
special = "|".join(special_tokens)
|
| 160 |
+
self.pat = re.compile(
|
| 161 |
+
special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
| 162 |
+
re.IGNORECASE,
|
| 163 |
+
)
|
| 164 |
+
self.vocab_size = len(self.encoder)
|
| 165 |
+
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
| 166 |
+
self.sot_token_id = self.all_special_ids[0]
|
| 167 |
+
self.eot_token_id = self.all_special_ids[1]
|
| 168 |
+
self.context_length = context_length
|
| 169 |
+
self.clean_fn = get_clean_fn(clean)
|
| 170 |
+
self.reduction_fn = get_reduction_mask_fn(reduction_mask) if reduction_mask else None
|
| 171 |
+
|
| 172 |
+
def bpe(self, token):
|
| 173 |
+
if token in self.cache:
|
| 174 |
+
return self.cache[token]
|
| 175 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
| 176 |
+
pairs = get_pairs(word)
|
| 177 |
+
|
| 178 |
+
if not pairs:
|
| 179 |
+
return token+'</w>'
|
| 180 |
+
|
| 181 |
+
while True:
|
| 182 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
| 183 |
+
if bigram not in self.bpe_ranks:
|
| 184 |
+
break
|
| 185 |
+
first, second = bigram
|
| 186 |
+
new_word = []
|
| 187 |
+
i = 0
|
| 188 |
+
while i < len(word):
|
| 189 |
+
try:
|
| 190 |
+
j = word.index(first, i)
|
| 191 |
+
new_word.extend(word[i:j])
|
| 192 |
+
i = j
|
| 193 |
+
except Exception:
|
| 194 |
+
new_word.extend(word[i:])
|
| 195 |
+
break
|
| 196 |
+
|
| 197 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
| 198 |
+
new_word.append(first+second)
|
| 199 |
+
i += 2
|
| 200 |
+
else:
|
| 201 |
+
new_word.append(word[i])
|
| 202 |
+
i += 1
|
| 203 |
+
new_word = tuple(new_word)
|
| 204 |
+
word = new_word
|
| 205 |
+
if len(word) == 1:
|
| 206 |
+
break
|
| 207 |
+
else:
|
| 208 |
+
pairs = get_pairs(word)
|
| 209 |
+
word = ' '.join(word)
|
| 210 |
+
self.cache[token] = word
|
| 211 |
+
return word
|
| 212 |
+
|
| 213 |
+
def encode(self, text):
|
| 214 |
+
bpe_tokens = []
|
| 215 |
+
text = self.clean_fn(text)
|
| 216 |
+
for token in re.findall(self.pat, text):
|
| 217 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
| 218 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
| 219 |
+
return bpe_tokens
|
| 220 |
+
|
| 221 |
+
def decode(self, tokens):
|
| 222 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
| 223 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
| 224 |
+
return text
|
| 225 |
+
|
| 226 |
+
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.LongTensor:
|
| 227 |
+
""" Returns the tokenized representation of given input string(s)
|
| 228 |
+
|
| 229 |
+
Parameters
|
| 230 |
+
----------
|
| 231 |
+
texts : Union[str, List[str]]
|
| 232 |
+
An input string or a list of input strings to tokenize
|
| 233 |
+
context_length : int
|
| 234 |
+
The context length to use; all CLIP models use 77 as the context length
|
| 235 |
+
|
| 236 |
+
Returns
|
| 237 |
+
-------
|
| 238 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
| 239 |
+
"""
|
| 240 |
+
if isinstance(texts, str):
|
| 241 |
+
texts = [texts]
|
| 242 |
+
|
| 243 |
+
context_length = context_length or self.context_length
|
| 244 |
+
assert context_length, 'Please set a valid context length'
|
| 245 |
+
|
| 246 |
+
if self.reduction_fn is not None:
|
| 247 |
+
# use reduction strategy for tokenize if set, otherwise default to truncation below
|
| 248 |
+
return self.reduction_fn(
|
| 249 |
+
texts,
|
| 250 |
+
context_length=context_length,
|
| 251 |
+
sot_token_id=self.sot_token_id,
|
| 252 |
+
eot_token_id=self.eot_token_id,
|
| 253 |
+
encode_fn=self.encode,
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
all_tokens = [[self.sot_token_id] + self.encode(text) + [self.eot_token_id] for text in texts]
|
| 257 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
| 258 |
+
|
| 259 |
+
for i, tokens in enumerate(all_tokens):
|
| 260 |
+
if len(tokens) > context_length:
|
| 261 |
+
tokens = tokens[:context_length] # Truncate
|
| 262 |
+
tokens[-1] = self.eot_token_id
|
| 263 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
| 264 |
+
|
| 265 |
+
return result
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
_tokenizer = SimpleTokenizer()
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
def decode(output_ids: torch.Tensor):
|
| 272 |
+
output_ids = output_ids.cpu().numpy()
|
| 273 |
+
return _tokenizer.decode(output_ids)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = DEFAULT_CONTEXT_LENGTH) -> torch.LongTensor:
|
| 277 |
+
return _tokenizer(texts, context_length=context_length)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def random_mask_tokenize(
|
| 281 |
+
texts: Union[str, List[str]],
|
| 282 |
+
context_length: int,
|
| 283 |
+
sot_token_id: int,
|
| 284 |
+
eot_token_id: int,
|
| 285 |
+
encode_fn: Callable,
|
| 286 |
+
shuffle: bool = False,
|
| 287 |
+
):
|
| 288 |
+
all_tokens = [encode_fn(text) for text in texts]
|
| 289 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
| 290 |
+
|
| 291 |
+
for i, tokens in enumerate(all_tokens):
|
| 292 |
+
tokens = torch.tensor(tokens)
|
| 293 |
+
num_tokens = len(tokens)
|
| 294 |
+
if num_tokens > context_length - 2: # 2 for sot and eot token
|
| 295 |
+
num_keep = context_length - 2
|
| 296 |
+
indices = torch.randperm(len(tokens))
|
| 297 |
+
indices = indices[:num_keep]
|
| 298 |
+
if not shuffle:
|
| 299 |
+
indices = indices.msort()
|
| 300 |
+
tokens = tokens[indices]
|
| 301 |
+
num_tokens = num_keep
|
| 302 |
+
result[i, 0] = sot_token_id
|
| 303 |
+
result[i, 1:num_tokens + 1] = tokens
|
| 304 |
+
result[i, num_tokens + 1] = eot_token_id
|
| 305 |
+
|
| 306 |
+
return result
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
def simple_mask_tokenize(
|
| 310 |
+
texts: Union[str, List[str]],
|
| 311 |
+
context_length: int,
|
| 312 |
+
sot_token_id: int,
|
| 313 |
+
eot_token_id: int,
|
| 314 |
+
encode_fn: Callable,
|
| 315 |
+
):
|
| 316 |
+
all_tokens = [encode_fn(text) for text in texts]
|
| 317 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
| 318 |
+
|
| 319 |
+
for i, tokens in enumerate(all_tokens):
|
| 320 |
+
num_tokens = len(tokens)
|
| 321 |
+
if num_tokens > context_length - 2: # 2 for sot and eot token
|
| 322 |
+
num_keep = context_length - 2
|
| 323 |
+
start_index = random.randint(0, num_tokens - num_keep) # high is incl
|
| 324 |
+
tokens = tokens[start_index: start_index + num_keep]
|
| 325 |
+
tokens = [sot_token_id] + tokens + [eot_token_id]
|
| 326 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
| 327 |
+
|
| 328 |
+
return result
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def syntax_mask_tokenize(
|
| 332 |
+
texts: Union[str, List[str]],
|
| 333 |
+
context_length: int,
|
| 334 |
+
sot_token_id: int,
|
| 335 |
+
eot_token_id: int,
|
| 336 |
+
encode_fn: Callable,
|
| 337 |
+
) -> torch.LongTensor:
|
| 338 |
+
""" Returns the tokenized representation of given input string(s).
|
| 339 |
+
Apply syntax masking before tokenize.
|
| 340 |
+
"""
|
| 341 |
+
import nltk
|
| 342 |
+
global _nltk_init
|
| 343 |
+
if not _nltk_init:
|
| 344 |
+
# run them for the first time
|
| 345 |
+
nltk.download('punkt')
|
| 346 |
+
nltk.download('averaged_perceptron_tagger')
|
| 347 |
+
_nltk_init = True
|
| 348 |
+
|
| 349 |
+
def get_order(x):
|
| 350 |
+
if x.startswith('NN'):
|
| 351 |
+
return 1
|
| 352 |
+
elif x.startswith('JJ'):
|
| 353 |
+
return 2
|
| 354 |
+
elif x.startswith('VB'):
|
| 355 |
+
return 3
|
| 356 |
+
else:
|
| 357 |
+
return 4
|
| 358 |
+
|
| 359 |
+
# syntax masking
|
| 360 |
+
new_texts = []
|
| 361 |
+
for text in texts:
|
| 362 |
+
list_tokens = nltk.tokenize.word_tokenize(text)
|
| 363 |
+
pos_tags = nltk.pos_tag(list_tokens)
|
| 364 |
+
# sample the words by get_order method
|
| 365 |
+
order_list = [get_order(tag) for _, tag in pos_tags]
|
| 366 |
+
sorted_ids = np.argsort(np.array(order_list))
|
| 367 |
+
sampled_ids = sorted(sorted_ids[:context_length - 2]) # need 2 slots for sot and eot tokens
|
| 368 |
+
sampled_tokens = np.take(np.array(list_tokens), sampled_ids, axis=0) # sample the tokens
|
| 369 |
+
|
| 370 |
+
new_text = ''
|
| 371 |
+
for token in sampled_tokens:
|
| 372 |
+
new_text = new_text + str(token) + ' '
|
| 373 |
+
new_text = new_text.strip()
|
| 374 |
+
new_texts.append(new_text)
|
| 375 |
+
texts = new_texts
|
| 376 |
+
|
| 377 |
+
all_tokens = [[sot_token_id] + encode_fn(text) + [eot_token_id] for text in texts]
|
| 378 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
| 379 |
+
|
| 380 |
+
for i, tokens in enumerate(all_tokens):
|
| 381 |
+
# still need first truncate because some words produces two tokens
|
| 382 |
+
if len(tokens) > context_length:
|
| 383 |
+
tokens = tokens[:context_length] # Truncate
|
| 384 |
+
tokens[-1] = eot_token_id
|
| 385 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
| 386 |
+
|
| 387 |
+
return result
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
def get_reduction_mask_fn(type: str):
|
| 391 |
+
""" Choose strategy for dropping (masking) tokens to achieve target context length"""
|
| 392 |
+
assert type in ('simple', 'random', 'shuffle', 'syntax')
|
| 393 |
+
if type == 'simple':
|
| 394 |
+
return simple_mask_tokenize # randomly select block [start:end]
|
| 395 |
+
elif type == 'random':
|
| 396 |
+
return random_mask_tokenize # randomly drop tokens (keep order)
|
| 397 |
+
elif type == 'shuffle':
|
| 398 |
+
return partial(random_mask_tokenize, shuffle=True) # randomly drop tokens (shuffle order)
|
| 399 |
+
elif type == 'syntax':
|
| 400 |
+
return syntax_mask_tokenize # randomly drop prioritized by syntax
|
| 401 |
+
else:
|
| 402 |
+
assert False, F'Unknown type {type}.'
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
class HFTokenizer:
|
| 406 |
+
"""HuggingFace tokenizer wrapper with support for custom tokenization modes"""
|
| 407 |
+
|
| 408 |
+
def __init__(
|
| 409 |
+
self,
|
| 410 |
+
tokenizer_name: str,
|
| 411 |
+
context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH,
|
| 412 |
+
clean: str = 'whitespace',
|
| 413 |
+
strip_sep_token: bool = False,
|
| 414 |
+
language: Optional[str] = None,
|
| 415 |
+
cache_dir: Optional[str] = None,
|
| 416 |
+
tokenizer_mode: Optional[str] = None, # None, 'clips'
|
| 417 |
+
**kwargs
|
| 418 |
+
):
|
| 419 |
+
self.tokenizer_mode = tokenizer_mode or ''
|
| 420 |
+
self.context_length = context_length
|
| 421 |
+
self.clean_fn = get_clean_fn(clean)
|
| 422 |
+
self.strip_sep_token = strip_sep_token
|
| 423 |
+
|
| 424 |
+
# NOTE: Left as example of loading custom tokenizer from file for experimentation
|
| 425 |
+
# if self.tokenizer_mode == 'bert_clips':
|
| 426 |
+
# self.special_tokens = {
|
| 427 |
+
# "bos_token": 1,
|
| 428 |
+
# "eos_token": 2,
|
| 429 |
+
# "cls_token": 101,
|
| 430 |
+
# "pad_token": 0
|
| 431 |
+
# }
|
| 432 |
+
#
|
| 433 |
+
# # For BERT CLIPS mode with vocab file
|
| 434 |
+
# from tokenizers import BertWordPieceTokenizer
|
| 435 |
+
# if tokenizer_name.startswith('hf-hub:'):
|
| 436 |
+
# from huggingface_hub import hf_hub_download
|
| 437 |
+
# # Format: hf-hub:repo_id/filename
|
| 438 |
+
# repo_url = tokenizer_name[7:]
|
| 439 |
+
# parts = repo_url.split('/')
|
| 440 |
+
# filename = parts[-1]
|
| 441 |
+
# repo_id = '/'.join(parts[:-1])
|
| 442 |
+
# vocab_file = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir)
|
| 443 |
+
# self.tokenizer = BertWordPieceTokenizer(lowercase=True)
|
| 444 |
+
# self.tokenizer = self.tokenizer.from_file(vocab_file)
|
| 445 |
+
# else:
|
| 446 |
+
# # Assume tokenizer_name is a local path to a vocab file
|
| 447 |
+
# self.tokenizer = BertWordPieceTokenizer(lowercase=True)
|
| 448 |
+
# self.tokenizer = self.tokenizer.from_file(tokenizer_name)
|
| 449 |
+
|
| 450 |
+
# Standard HuggingFace tokenizer initialization
|
| 451 |
+
from transformers import AutoTokenizer
|
| 452 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 453 |
+
tokenizer_name,
|
| 454 |
+
cache_dir=cache_dir,
|
| 455 |
+
**kwargs
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
# Set language function if available
|
| 459 |
+
set_lang_fn = getattr(self.tokenizer, 'set_src_lang_special_tokens', None)
|
| 460 |
+
if callable(set_lang_fn):
|
| 461 |
+
self.set_lang_fn = set_lang_fn
|
| 462 |
+
if language is not None:
|
| 463 |
+
self.set_language(language)
|
| 464 |
+
|
| 465 |
+
def save_pretrained(self, dest):
|
| 466 |
+
self.tokenizer.save_pretrained(dest)
|
| 467 |
+
|
| 468 |
+
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.Tensor:
|
| 469 |
+
# same cleaning as for default tokenizer, except lowercasing
|
| 470 |
+
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
|
| 471 |
+
if isinstance(texts, str):
|
| 472 |
+
texts = [texts]
|
| 473 |
+
|
| 474 |
+
context_length = context_length or self.context_length
|
| 475 |
+
assert context_length, 'Please set a valid context length in class init or call.'
|
| 476 |
+
|
| 477 |
+
texts = [self.clean_fn(text) for text in texts]
|
| 478 |
+
|
| 479 |
+
# Handle different tokenization modes
|
| 480 |
+
if self.tokenizer_mode == 'clips':
|
| 481 |
+
return self._clips_tokenize(texts, context_length)
|
| 482 |
+
else:
|
| 483 |
+
# Standard tokenization
|
| 484 |
+
input_ids = self.tokenizer.batch_encode_plus(
|
| 485 |
+
texts,
|
| 486 |
+
return_tensors='pt',
|
| 487 |
+
max_length=context_length,
|
| 488 |
+
padding='max_length',
|
| 489 |
+
truncation=True,
|
| 490 |
+
).input_ids
|
| 491 |
+
|
| 492 |
+
if self.strip_sep_token:
|
| 493 |
+
input_ids = torch.where(
|
| 494 |
+
input_ids == self.tokenizer.sep_token_id,
|
| 495 |
+
torch.zeros_like(input_ids),
|
| 496 |
+
input_ids,
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
return input_ids
|
| 500 |
+
|
| 501 |
+
def set_language(self, src_lang):
|
| 502 |
+
if hasattr(self, 'set_lang_fn'):
|
| 503 |
+
self.set_lang_fn(src_lang)
|
| 504 |
+
else:
|
| 505 |
+
warnings.warn('Cannot set language for the tokenizer.')
|
| 506 |
+
|
| 507 |
+
def _clips_tokenize(self, texts: List[str], context_length: int) -> torch.Tensor:
|
| 508 |
+
"""Use standard HF tokenizer but apply custom post-processing"""
|
| 509 |
+
# Use standard tokenizer without special tokens - we'll add our own
|
| 510 |
+
encoded_outputs = self.tokenizer.batch_encode_plus(
|
| 511 |
+
texts,
|
| 512 |
+
add_special_tokens=False,
|
| 513 |
+
padding=False,
|
| 514 |
+
truncation=False,
|
| 515 |
+
return_tensors=None
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
encoded = []
|
| 519 |
+
for tokens in encoded_outputs["input_ids"]:
|
| 520 |
+
tokens = tokens[:context_length - 3] # Leave room for special tokens
|
| 521 |
+
tokens = [self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id]
|
| 522 |
+
encoded.append(tokens)
|
| 523 |
+
|
| 524 |
+
# Create result tensor and handle padding + class token
|
| 525 |
+
result = torch.zeros(len(encoded), context_length, dtype=torch.long)
|
| 526 |
+
for i, tokens in enumerate(encoded):
|
| 527 |
+
padded_tokens = self._pad_and_add_class_token(
|
| 528 |
+
tokens,
|
| 529 |
+
max_length=context_length,
|
| 530 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 531 |
+
cls_token_id=self.tokenizer.cls_token_id,
|
| 532 |
+
)
|
| 533 |
+
result[i, :len(padded_tokens)] = torch.tensor(padded_tokens)
|
| 534 |
+
|
| 535 |
+
return result
|
| 536 |
+
|
| 537 |
+
def _pad_and_add_class_token(
|
| 538 |
+
self,
|
| 539 |
+
tokens: List[int],
|
| 540 |
+
max_length: int,
|
| 541 |
+
pad_token_id: int = 0,
|
| 542 |
+
cls_token_id: int = 101,
|
| 543 |
+
) -> List[int]:
|
| 544 |
+
""" Add padding with class token at the end """
|
| 545 |
+
if len(tokens) > max_length - 1:
|
| 546 |
+
tokens = tokens[:max_length - 1]
|
| 547 |
+
|
| 548 |
+
# Add padding to reach max_length-1
|
| 549 |
+
if len(tokens) < max_length - 1:
|
| 550 |
+
tokens = tokens + [pad_token_id] * (max_length - 1 - len(tokens))
|
| 551 |
+
|
| 552 |
+
# Add class token at the end
|
| 553 |
+
tokens = tokens + [cls_token_id]
|
| 554 |
+
return tokens
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
class SigLipTokenizer:
|
| 558 |
+
"""HuggingFace tokenizer wrapper for SigLIP T5 compatible sentencepiece vocabs
|
| 559 |
+
|
| 560 |
+
NOTE: this is not needed in normal library use, but is used to import new sentencepiece tokenizers
|
| 561 |
+
into OpenCLIP. Leaving code here in case future models use new tokenizers.
|
| 562 |
+
"""
|
| 563 |
+
VOCAB_FILES = {
|
| 564 |
+
# english, vocab_size=32_000
|
| 565 |
+
"c4-en": "http://storage.googleapis.com/t5-data/vocabs/cc_en.32000/sentencepiece.model",
|
| 566 |
+
# used in multilingual models (mT5, PaLI), vocab_size=250_000
|
| 567 |
+
"mc4": "http://storage.googleapis.com/t5-data/vocabs/mc4.250000.100extra/sentencepiece.model",
|
| 568 |
+
# used in SigLIP2 models, vocab_size=256000
|
| 569 |
+
"gemma": "http://storage.googleapis.com/big_vision/gemma_tokenizer.model",
|
| 570 |
+
}
|
| 571 |
+
|
| 572 |
+
def __init__(
|
| 573 |
+
self,
|
| 574 |
+
tokenizer_name: str,
|
| 575 |
+
context_length: Optional[int] = 64,
|
| 576 |
+
):
|
| 577 |
+
if 'gemma' in tokenizer_name:
|
| 578 |
+
from transformers import GemmaTokenizerFast
|
| 579 |
+
tokenizer_cls = partial(
|
| 580 |
+
GemmaTokenizerFast, padding_side='right', add_bos_token=False, add_eos_token=True)
|
| 581 |
+
else:
|
| 582 |
+
from transformers import T5TokenizerFast
|
| 583 |
+
tokenizer_cls = partial(T5TokenizerFast, extra_ids=0)
|
| 584 |
+
|
| 585 |
+
if tokenizer_name in self.VOCAB_FILES:
|
| 586 |
+
# FIXME temporary hack?
|
| 587 |
+
import tempfile
|
| 588 |
+
import fsspec
|
| 589 |
+
vocab_file = self.VOCAB_FILES[tokenizer_name]
|
| 590 |
+
with tempfile.NamedTemporaryFile('wb') as dst:
|
| 591 |
+
with fsspec.open(vocab_file, 'rb') as src:
|
| 592 |
+
dst.write(src.read())
|
| 593 |
+
self.tokenizer = tokenizer_cls(dst.name, legacy=False)
|
| 594 |
+
else:
|
| 595 |
+
self.tokenizer = tokenizer_cls(tokenizer_name, legacy=False)
|
| 596 |
+
|
| 597 |
+
self.tokenizer.pad_token_id = 0 if 'gemma' in tokenizer_name else 1
|
| 598 |
+
self.tokenizer.eos_token_id = 1
|
| 599 |
+
self.context_length = context_length
|
| 600 |
+
|
| 601 |
+
def save_pretrained(self, dest):
|
| 602 |
+
self.tokenizer.save_pretrained(dest)
|
| 603 |
+
|
| 604 |
+
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.Tensor:
|
| 605 |
+
# same cleaning as for default tokenizer, except lowercasing
|
| 606 |
+
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
|
| 607 |
+
if isinstance(texts, str):
|
| 608 |
+
texts = [texts]
|
| 609 |
+
|
| 610 |
+
context_length = context_length or self.context_length
|
| 611 |
+
assert context_length, 'Please set a valid context length in class init or call.'
|
| 612 |
+
|
| 613 |
+
texts = [canonicalize_text(basic_clean(text)) for text in texts]
|
| 614 |
+
output = self.tokenizer(
|
| 615 |
+
texts,
|
| 616 |
+
return_tensors='pt',
|
| 617 |
+
max_length=context_length,
|
| 618 |
+
padding='max_length',
|
| 619 |
+
truncation=True,
|
| 620 |
+
)
|
| 621 |
+
return output.input_ids
|
zebra.jpg
ADDED
|
Git LFS Details
|